next up previous
次へ: Another Interpretation as Clustering 上へ: A Maximum Likelihood Formulation 戻る: Model of Harmonic Structures


Model Parameter Estimation using EM Algorithm


Since the observed spectral density function $ f(x)$, where $ x$ denotes log-frequency, is considered to be generated from the model of multiple harmonic structures, the log-likelihood difference in accordance with an update of the model parameter $ \theta$ to $ \bar{\mbox{\boldmath $\theta$}}$ is

$\displaystyle f(x)\log P_{\bar{\theta}}(x)-f(x)\log P_{\theta}(x)=\displaystyle f(x)\log \frac{P_{\bar{\theta}}(x)}{P_{\theta}(x)}.$     (2)



Although Dempster formulated EM algorithm [8] in order to maximize the mean log-likelihood considering $ f(x)$ as a probabilistic density function, it can also be formulated in a same way even if $ f(x)$ is replaced with spectral density function. By taking expectation of both sides with respect to $ P_{\theta}(n,k\vert x)$ which represents the probability of the $ \{n,k\}$-labeled Gaussian distribution from which $ x$ is generated, $ Q$-function will be derived in the right-hand side. Given $ Q$-function as

$\displaystyle Q(\theta,\!\bar{\theta})\!=\!\!\displaystyle\sum_{k=1}^{K}\!\sum_...
...}\!\!\!\!\!
P_{\theta}(n,\!k\vert x)f(x)\log P_{\bar{\theta}}(x\!,\!n\!,\!k)dx,$     (3)



thus it yields

$\displaystyle \displaystyle\int_{-\infty}^{\infty}\biggr\{f(x)\log P_{\bar{\theta}}(x)-f(x)\log P_{\theta}(x)\biggr\}dx$      



$\displaystyle ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\ge Q(\theta,\bar{\theta})-Q(\theta,\theta).$     (4)



By obtaining $ \bar{\theta}$ which maximizes the $ Q$ function, the log-likelihood of the model of multiple harmonic structures with respect to every $ x$ will be monotonously increased. A posteriori probability $ P_{\theta}(n,k\vert x)$ in equation (3) is given as

$\displaystyle P_{\theta}(n,k\vert x)$ $\displaystyle =$ $\displaystyle \displaystyle\frac{P_{\theta}(x,n,k)}{P_{\theta}(x)},$ (5)
  $\displaystyle =$ $\displaystyle \displaystyle\frac{w_n^k\cdot g(x\vert\mu_k\!+\!\log n,\sigma^2)}{\displaystyle\sum_{n}\sum_{k}w_n^k\cdot g(x\vert\mu_k\!+\!\log n,\sigma^2)},$ (6)
$\displaystyle g(x\vert x_0,\!\sigma^2)$ $\displaystyle =$ $\displaystyle \displaystyle\frac{1}{\sqrt{2\pi \sigma^2}}\exp\bigg\{-\displaystyle\frac{(x-x_0)^2}{2\sigma^2}\bigg\},$ (7)

where $ g(x\vert x_0,\!\sigma^2)$ is a Gaussian distribution. By the iterative procedure of the two steps as follows, the model parameter $ \theta$ locally converges to ML estimates.
Initial-step

Initialize the model parameter $ \theta$.
Expectaion-step

Calculate $ Q(\theta,\bar{\theta})$ with equation (3).
Maximization-step

Maximize $ Q(\theta,\bar{\theta})$ to obtain the next estimate

$\displaystyle \mbox{\boldmath$\theta$}$$\displaystyle =\mathop{\rm argmax}_{{\bar{\theta}}} Q(\theta,\bar{\theta}).$     (8)



Replace $ \bar{\mbox{\boldmath $\theta$}}$ with $ {\mbox{\boldmath $\theta$}}$ and repeat from the Expectation-step.


next up previous
次へ: Another Interpretation as Clustering 上へ: A Maximum Likelihood Formulation 戻る: Model of Harmonic Structures
平成16年3月25日