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Abstract

This paper discusses analytic methods of acous-
tic model adaptation for automatic speech recognition
and reviews other major methods. The main pur-
pose of this paper is to demonstrate the potential of
analytic approach for model adaptation. As an ex-
ample of analytic methods, Jacobian Adaptation (JA)
is intensively discussed and its potential of applicabil-
ity to speech recognition problems is revealed. Vector
Field Smoothing (VFS) is introduced as an extension
of a special case of JA. Other method reviewed in this
paper include Maximum A Posteriori (MAP) estima-
tion, transformation-based approaches including Max-
imum Likelihood Linear Regression (MLLR), struc-
tural approaches, model selection including Eigenvoice,
and feature compensation including Speaker Adaptive
Training (SAT).

1 Introduction

Automatic speech recognition systems using continu-
ous density hidden Markov models (HMMs) have been
recently used in various applications, and speaker-in-
dependent (SI) systems have been constructed using
speech samples collected from many speakers. It has
been reported, however, that the performance of SI
HMMs is often degraded when there is a mismatch
between the training and testing environments. For
example, when the acoustic characteristics of a new
speaker are very different from those of the speakers
in the training data, the recognition accuracy for the
new speaker might be far below the average accuracy.
Other major differences causing mismatches are those
due to different microphones, channels, and noise en-
vironments.

Many techniques compensating the degradation cau-
sed by mismatches have been developed. They are
roughly grouped into two categories, namely: (1) fea-
ture compensation (e.g. [30]), in which the process of
feature extraction is modified; and (2) model adapta-
tion (e.g. [16, 32]), in which the parameters of recogni-
tion models are adjusted. Combining these two tech-
niques has been shown effective (e.g. [42]). Since it
is almost impossible to cover all these techniques, the
readers are also referred to two recent reviews [62, 31].

This paper mainly focuses on acoustic model adap-
tation. The fairly common framework in this domain
is as follows. A sufficiently good acoustic model for an
environment, named A, is given. When a small amount

of data samples from the target environment, named
B, is given, find a good way to adjust the initial model
(originally for A) so that the adapted model performs
well in B. If the mismatch between the acoustic model
and the real environment is too large for any adapta-
tion method to compensate, model selection from mul-
tiple models seems to be the best way to improve the
performance. Therefore, model adaptation treats rela-
tively small model mismatches.

In speaker adaptation case, adaptation is done from
the initial speaker, A (or speaker-independent), to the
target speaker, B. Similarly, adaptation to environ-
mental noise and transmission channel can be consid-
ered as acoustic model adaptation from condition A to
condition B.

“Analytic methods” refers to methods that utilizes
analytic functions and their handling such as differen-
tiation in this paper. One of typical approaches in this
category is Jacobian approach which is contrasted with
Bayesian approach. First, we discuss Jacobian adap-
tation for the case that the mapping function from the
cause to the results are known and the difference be-
tween conditions A and B is given. Second, we discuss
Vector Field Smoothing as a case where the mapping
function is unknown. These are followed by a review
of other major methods.

2 Jacobian Adaptation (JA)

2.1 Mathematical formulation

Jacobian approach (JA) [39, 63], proposed in 19971, is
one of analytic approaches to adapting initial acoustic
models under an initial condition, A, to a target condi-
tion, B, assuming that the difference between the two
conditions are relatively small. It has been shown that
this method provides a computationally efficient and
effective algorithm for adaptation of acoustic models
to a given noisy condition [45, 5].

This method provides a wide applicability to ana-
lytic relationships between causes and results. In gen-
eral, if the results Y is an analytic function of causes

X, namely,
Y = f(X)v (1)

AX, ie., a small change in vector X, causes AY,
i.e., another small change in vector Y, which is well

1This idea was first conceived in 1992, experimented and pre-
sented in Japanese in 1996 and presented in English in 1997.



approximated by
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This simple math suggests a lot about model adap-
tation. In speech recognition, mismatch between an
acoustic model and the target speaker and environment,
often causes a serious degradation of the performance.
If the mismatch is so large that any adaptation method
can not compensate it, model selection from multiple
models seems to be the best way to improve the per-
formance. Therefore, in most cases, model adaptation
focuses on relatively small model mismatches. If there
is a small mismatch A X, the following formula means
that a small change in X causes another small change

in £(X)

f(X)+ 6—YAX (3)

FIX+AX) = X

For example, suppose X is a feature vector represent-
ing the noise spectrum in condition A, and f(X) is
the mean of a state output distribution of feature vec-
tors in the initial noisy speech model. If the noise fea-
ture vector observed in condition B is slightly different
from X and if the difference is AX, the mean vector
of the noisy speech model should be adjusted to be
f(X4+AX) which can be well approximated and eas-
ily calculated by the right-hand side of Eq.(3). Being
linear, this calculation is generally fast and requires a
small amount of computation.

Note that function f(X) can be any analytic func-
tion and can be non-linear. Also, this relation can
be extended to multilayer relationships between the
causes and results. If U is a variable related to X, we
can extend Eq.(2) to

oY Y 0X
AY = ——AX = — ——AU. 4
0X 0X oU )
Thus, we can even think of “Jacobian Network” which
relates multiple nodes representing different factors by
Jacobians just like the concept of “Bayesian Network” .

2.2 Higher-order approximation

To make this linear approximation more accurate [63],
one can introduce higher orders in the Taylor series of
function f(x) of vector x given by:

=1
f(X +AX) = Zy (AXTWF (X)) (5)
k=0
where 5 5 5
f— ... T
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denotes the Laplacian operator. Note that the first-
order term of the Taylor series is equivalent to Jaco-
bian.

As for the use of Taylor series, Moreno et al. [34]
defined a specific function in the spectral domain (not
including cepstral features and other general cases):

z=x+q+log(l+e" "9 (7)

and used its Taylor series for adaptation to noise, where
z, x and n represent log-spectra of degraded speech,
clean speech and noise, and ¢ is an unknown param-
eter that represents the effect of linear filtering in the
log-spectrum domain. This paper is related to the Ja-
cobian approach in the sense that first-order term of
the Taylor series is Jacobian.

2.3 Jacobian adaptation to noisy cep-
stra

One of most common special cases is that the feature
vector is cepstrum and the environmental factor is ad-
ditive noise.

In the linear-scale power spectrum domain, noisy
speech is represented by Y = S 4+ IN where n-dimen-
sional vectors S, N, and Y denote the clean speech
spectrum, additive noise spectrum, and the resulted
composite speech spectrum, respectively. Here, vec-
tor operations are applied component by component?.
The signal-to-noise ratio is not treated separately; the
noise power is included in IN. In the cepstral domain,
the composite speech cepstrum, Gy, is a non-linear
function of the speech cepstrum, C5, and the noise
cepstrum, Cy, as follows:

Cy =F~ [log {exp(FGs) + exp(FCN)}} (8)
since these cepstra are related to the respective spectra
by

logY=FCy, log S=FCs, log N=FCy (9)

where F' is the (m x n) Fourier transform matrix (m
and n represent the resolutions of frequency and que-
frency axes) and F™ is the transposed complex conju-
gate of F that F*F = 1.

The Jacobian matrix of the above non-linear func-
tion of Cs and Cy is given as follows:

J. = dCy  0Cy alogYa_Y ON Olog N
© T 9Cy " dlogY JY N dlogN ICy
1

= FF————HNF=F~ F 10

H(S+ N) S+ N (10)

This gives a practical calculation of Jacobian compo-
nents: 50, N
Y —1 k

| = o —" [ 11

|:aCN:|ij ; ik Sk +Nk kj ( )

Thus, if differences between the initial and observed

conditions, A and B, is found in the cepstrum domain,

e., ACy, the composite cepstrum is approximately
computed by Eq. (10).

2For vectors a and b, ab = (a1b1,  -,anbn)T, a/b =
(a1/b1,++,an/bn)T, expa = (expay,---,expan)T, and loga =
(logat,---,logan)T. One can regard vectors as diagonal matri-
ces for consistency with matrix arithmetic.



2.4 Jacobian adaptation of time deriva-
tives

To demonstrate that the analytic approach can handle
the time derivatives, we consider that the cepstrum
is a continuous function of time from which we usu-
ally observe a sample sequence for discrete time points.
Denote by C' the time derivative of C. Because the
time derivative of spectrum S is related to the time-
derivative of cepstrum C' by

S= a{exp(log S)} =exp(logS) 5 (logS)=SFCs(12)
we obtain the Jacobian matrix of the time derivative of
the composite cepstrum from Eq.(11) by using a rela-
tion between the time derivative of the linear spectrum
and the cepstrum:

9Cy aacyF*a( N )

OCy  0toCy ~ Ot\S+ N
NS - NS
—F |22\ F 13
((S+N)2> (13)

which leads to the practical calculation:

GCS_HV 1 NkSk — NkS"k
= E Fo-—F}; 14
l OCN ] N - ik kj ( )
ij

(Sk + Ni)?

though the mean of the delta cepstrum of the noise
signal can be assumed to be close to 0 and the above
formula is not used in practice.

2.5 Jacobian Adaptation of Means and
Variances

Another demonstration of analytic approach is adap-
tation of mean vector and covariance matrix of a distri-
bution. Assuming that the variance of the distribution
of Cy is sufficiently small and stays within the effective
range of linear (Jacobian) approximation, we can ex-
tend the above relationship of point-to-point mapping
to mean vectors of statistical distributions. In other
words, if the Jacobian matrix can be regarded as a
constant within the distribution range, small changes
of mean values of Cy, and Cy are related to each other
by (X denotes the mean of X.):

ACy =
ACov[Cy] =

JoACy (15)
Jo ACov[Cy] JE (16)

if Cy, Cy, and ACy are statistically independent. In
practical cases, however, the latter formula is not fully
utilized due to lack of sufficient data to accurately ob-
tain ACov[Cyl].

2.6 Practical issues

In practical applications of speech recognition where
environmental conditions often vary from time to time
(e.g., mobile applications) or with each usage (e.g.,
telephone applications), acoustic model mismatch re-
sults in a serious degradation of performance. Only if a

sufficient amount of training data is available, retrain-
ing acoustic models using the actual noise environment
is feasible, but not in most cases.

Acoustic model composition from clean speech mod-
el and noise model such as PMC [14] (or NOVO [33])
requires too much computation to follow in real-time
the instantaneous changes in noise spectrum and level.
Moreover, these methods tend to require a considerable
amount of training noise sample data.

Jacobian adaptation is advantageous in this point
of view. The practical procedure is as follows:

Training Phase: In the training phase,

Step 1 - Train the model under the initial con-
dition A. Assume an initial noise condition
as the reference (Condition A). Train the initial
speech model (CM-HMMs) under the initial con-
dition with real or simulated (e.g., noise-added)
speech data, or use PMC [14] (or NOVO [33])
to compose HMMs from clean speech and noise
models. Also from the initial condition, obtain
initial means of noise, Cy.

Step 2 - Calculate Jacobian matrices.
For each mean vector of all the mixture com-
ponents in the CM-HMMs, calculate the corre-
sponding linear spectrum S [with Eq. (9)] and
Jacobian matrices J¢ for the cepstrum [Eq. (11)].

In the recognition phase,

Recognition Phase:

Step 3 - Observe noise and channel under the
target condition B. Obtain the noise and
channel cepstra and find the differences of the
mean vectors, ACy, between the initial and tar-
get conditions (i.e., Conditions A and B).

Step 4 - Update mean vectors and variance
matrices. Update all cepstrum and delta-
cepstrum mean vectors and variances of mixture
components in the HMMs by Egs.(16) and (?7?),
namely,

Gy — Gy + JoATY (17)

It should be noted that the Fourier transform is es-
sentially the cosine transform in real symmetric spec-
trum cases, namely, F;; = cos 2Zn£ and the computa-
tion amount can be reduced to one quarter by handling

the positive frequency only. One implementation is

i(k +0.5)7
Fir = cos N (18)
where N stands for the number of frequency points.
Cepstrum can be simply replaced by MFCC in the
above formulation where the corresponding spectrum
is replaced by mel-frequency warped spectrum.
Cerisara et al. [5] and Sarikaya et al. [43] proposed
to emphasize the noise spectrum as to improve linear
approximation to cover a wider range and yielded even
better results compared with PMC [14]. They also sug-
gest to cluster Jacobian matrices into a small number
to save the memory space without no significant degra-
dation of performance.



2.7 Adaptation to noise and channel

The Jacobian adaptation algorithm for additive noise
and multiplicative channel can be easily derived by re-
placing Eq.(8) with

Cy = F~ [log {exp(FG) + exp(FCN)}} +Cy (19)

and by following the same derivation as in the noise-
only case. to obtain an almost same algorithm except
for an additional term representing the channel differ-
ence as follows:

Oy « Gy + JoAGy + AT (20)

which is useful if noise and channel cepstra can be ob-
served separately.

2.8 Joint adaptation to noise and chan-
nel

Noise and channel differences, however, can not be ob-
served separately in most cases such as in telephone
speech recognition. This problem of unknown noise
and channels involves a joint estimation problem for
noise and channel differences between conditions A and
B. Noting that Eq. (10) holds at mean vectors of all
distributions aligned to the input speech, we have

ACH = JYACy + ACy + eV
ACY = I ACy + ACy + €® (21)

where M is the number of distributions contained in
the acoustic model Viterbi aligned to the input speech
(that can be the total number of mixture components)
and € is the i-th error term. Thus, if a small amount
of input speech with unknown noise and channel is
given with its phonetical transcription, we can obtain
the joint estimate of ACy and ACy by simple least
squares estimation. Once the linear decomposition into
ACy and ACy are estimated, we can apply Eq. (10)
to estimate all mean vectors of the model.

It should be noted that, even if some equations in
the above simultaneous linear equations are missing,
the common coefficients, ACy and ACy, are estimated
through least squares fit and applied to missing equa-
tions. This gives a solution to the “unseen context”
problem. One typical result of experimental perfor-
mance evaluation gave a 10% error reduction rate for
8 word utterances for supervised adaptation.

2.9 Adaptation to VTL

The Jacobian approach can be extended to include
some aspects of speaker differences [40]. If the vocal
tract length becomes A-times longer, the corresponding
speech spectrum changes from f(w) into f(Aw). The
Jacobian matrix Jy of resulted cepstrum in respect
to A matrix has only one column and appears like a
vector.

Combining noise, channel, and vocal tract length
factors, we can express the small changes in the com-
posite cepstrum as follows using small changes in noise
cepstrum, channel cepstrum, and the vocal length stre-
tch coefficient:

ACy = JNACy + ACy + Jy AN (22)

In Egs.(9), if we replace the Fourier Transform F
with a A-stretched Fourier transform F>, or, if we use

Xi(k + 0.5)7
F) = _ 23
A= cos L (23
instead of Eq.(18), the A-stretched speech spectrum S
is given by -

log 8 = F Gs. (24)

The A-stretched cepstrum Cg is thus expressed as
Cs =F 'F\G (25)

whose i-th component is given by

N p
Csi=Y F;'Y F)Cs (26)
k=1

j=1

from which the i-th component of its Jacobian in re-
spect to A is derived by differentiating it by A as

N p .
_ —j(k +0.5)7
=3y 3 G o
j=1 k=1

where matrix G represents the sine transform.

The joint estimation of noise, channel, and vocal
tract length can be formulated in the same way as de-
scribed for the noise and channel case [41].

3 Vector Field Smoothing (VFS)

Vector Field Smoothing (VFS) [35, 17], proposed in
1992, is an effective and easy-to-use method for speaker
and channel adaptation and actually is frequently used.
It can be understood as a non-parametric version of
Jacobian adaptation. Assume that a set of good initial
acoustic models is given but only a limited amount of
training data is available for adaptation to the target
speaker B. The initial model has been well trained
by a large amount of data from speaker A (or speaker-
independent). VFS assumes that the mapping function
from speaker A to speaker B is unknown but known
to be smooth, i.e., does not change suddenly in the
feature vector space.

VES speaker adaptation is performed as follows.
Given the speaker B’s arbitrary utterance with its pho-
netical transcription, mean vectors of constituent dis-
tributions in the model are retrained through embed-
ded training using the initial models of speaker A. The
difference ACy between mean vectors before and af-
ter retraining is found. These vectors are regarded as
samples of underlying true ACy containing statistical



fluctuations and estimation errors. If the contained er-
rors are supposed to be random, they can be reduced
by spatial smoothing such as:

Aty = ¥ wacy (28)
jeK;

where w; means the spatial smoothing filter weights
and Kj; is the k-nearest neighbor of the distribution 1.
The weight w; can be any that satisfies good character-
istics of smoothing. In the original paper, Ohkura et
al. [35] used a fuzzy membership function, while some
others used Gaussian smoothing windows later. The
smoothing window spreadth is empirically determined
so as to make a best compromise between spatial res-
olution and statistical error reduction.

Missing vectors between corresponding states (or
Gaussians) of speakers A and B are automatically es-
timated and recovered from the vector field through
smoothing, just as in joint Jacobian adaptation to noise
and channel. This feature is one of outstanding ad-
vantages of this method and inherits the advantage of
spatial interpolation from a coding paper [44].

This algorithm is usually performed in the cepstral
ot MFCC multidimensional space. The difference be-
tween linear microphone characteristics can be normal-
ized by parallel shifting the acoustic models in the
cepstrum multidimensional space since a linear sys-
tem represented by convolution in the time domain
is transformed into multiplication in the spectral do-
main, and addition in the logarithmic spectral domain
and the cepstral domains. The spectral change from
noiseless to noisy environments is also supposed to be
continuous and smooth in the cepstral space. Thus,
VFS adapts the system to the new speaker, new micro-
phone, new noise environment, and some other factors
affecting the speech spectra simultaneously.

VES can be interpreted as position-dependent chan-
nel bias vectors. In the cepstral domain, linear channel
affects cepstrum vectors AC' as a constant bias vector
AC that is added to all cepstral vectors in an acoustic
model. This is interpreted as a uniform vecter field
in a cepstral vector space in which vector points are
carried along the vector field just like floating objects
carried by a flow. If the cepstral difference between
speakers could be simply modeled by such a uniform
vector field, speaker adaptation would be a simple ad-
dition of AC' to all cepstral points. The bias vector,
AC, is, however, not uniform throughout the vector
space but dependent on the location. Thus, AC is a
function of C not known in the analytic sense.

4 Maximum A Posteriori (MAP)
Estimation

Maximum A Posteriori (MAP) estimation [9, 16] has
been widely used approach for model adaptation. We
consider the case where the parametric form of the
probabilistic density function (pdf) p(z), where z is
a k-component vector-valued random variable, is the
multivariate Gaussian pdf,

Nx|p, %) =

(27)7% || "% exp *%(X —w)TET (x - p)|(29)

while neither the mean vector g nor the variance X
are known. Let X = {x1,...,xn} be a set of observed
samples, which are assumed to be independent and
identically distributed (i.i.d.). Our goal is to estimate
the parameter set § = {u, X} by using the observation
samples X.

Maximum likelihood (ML) estimation is often used
for this purpose. In the ML estimation, the parameter
set which maximizes the following likelihood function

is chosen,
N

F(x10) = T] p(xal6)-

n=1

(30)

The resulting maximum likelihood estimate, 6 = {I, f]},
is calculated as follows,

i (31)

L X

N 2 X

N n=1

L X
S o= oYt W W (32)

n=1
In the maximum a posteriori (MAP) estimation

[9, 16], it is assumed that the parameter set 6 is a ran-
dom vector in the parameter space and it has a prior
distribution p(6). Let p(0|X’) be the posterior pdf that
is obtained after the observation of X. Then, using
Bayes’ rule,

p(X]0)p(0)

POX) = T

= O[] pxal0)p(0).

=1

(33)

where C' is a scale factor that depends on X but is
independent of §. The MAP estimate 6 is defined as
the mode of the posterior pdf,

6 = argmaxp(6|X)
0

N
= argmax 11 p(xul0)p(6). (34)

n=1

The choice of the prior pdf is a key issue in MAP
estimation. Mainly from the viewpoint of tractability,
the conjugate prior pdf is often used; when using it, the
resulting posterior pdf is in the same family as the one
that the prior pdf belongs to. One such pdf for the
multivariate Gaussian pdf N (x|p,X) is the normal-
Wishart density of the form,

g(“’a E“"’Oa Z:0: @, T) &
—k T

B e S 1) B (e )]

1
X exp {?r(zozl)} , (35)
where (pg, Xo, @, 7) are the prior density parameters
such that « > k—1, 7 > 0, p is a vector of dimension
k, and X is a k X k positive definite matrix.



Then, the MAP estimate § = {fi, X} is the one
that maximizes the following function,

N
9(p, 21X) = [ pexnlie. D)g(p, X).  (36)
n=1
After simple calculations, we get
N
Tg + Z X,
~ n=1
= — "= 37
H T+ N (37)
2 =

o + Z(Xn — 1) (cn — )"+ 7 (o — ) (o — 0)”

(a—k)+ N

(38)

The improvement obtained with MAP estimation
is significantly larger than that obtained with ML es-
timation, especially when the amount of adaptation
data is small. It should be noted that as the number of
samples, N, increases, the MAP estimate 6 = {f1, 2}
approaches the ML estimate 6 = {fz, X}.

A quasi-Bayes approach [18] has also been adopted
and extended the MAP framework to on-line MAP
adaptation.

5 Transformation-based Approac

5.1

Another category of adaptation techniques, which do
not use the MAP framework, are often referred to
as transformation-based approaches, such as cepstrum
mean normalization (CMN) [1], signal bias removal
(SBR) [38], mazimum likelihood linear regression(ML
LR)[32], spectral interpolation [46], vector field smooth-
ing (VFS) [35], stochastic matching (SM) [42], nonlin-
ear stochastic matching [54] and predictive adaptation
[65]. This family of techniques limits the number of
free parameters by tying the HMM parameters or by
applying some constraints on the parameters in order
to improve recognition accuracies with a small amount
of data.

overview

5.2 Maximum Likelihood Linear Regres-
sion (MLLR)

Maximum Likelihood Linear Regression (MLLR) [32]
is one of most famous transformation-based approach.
In MLLR, the mean vectors of Gaussian distributions
in HMMs are modified using an affine transformation,

fi=Ap+b, (39)
where A is an n X n matrix, and b is a vector of dimen-
sion n, in which n is the dimension of the observation
vector. This equation is rewritten as follows:

i = W¢, (40)

where W is an n.x (n+1) matrix and 7 = (1, p1, ..., itp)-
The matrix W is estimated by E-M algorithm using the
adaptation data.

In this approach, the Gaussian distributions in
HMMs are clustered into some groups and one trans-
formation matrix is shared in the distributions in each
group. Usually, one global matrix is share among all
the distributions or one matrix is provided for each
phone.

It should be noted that it is assumed here that the
mapping of mean vectors can be efficiently approxi-
mated by an affine transformation. It is clear, how-
ever, that this assumption is not true when one global
matrix is used for all the distributions. Therefore, the
key issue in this approach is how to provide the clus-
ters of distributions. The number of clusters should
be controlled according to the amount of data to avoid
the data insufficiency problems.

6 Structural approach

It is desirable that adaptation improves speech recog-
nition accuracies even when little adaptation data is
given and more importantly it yields performance equal
to or better than that obtained using mazimum likeli-
hood (ML) estimation when enough data is available.
Few methods, however, achieve both objectives.

In MAP estimation methods, HMM parameters of
different speech units are often assumed to be inde-

h pendent. Therefore, each model can be adapted only

if the corresponding speech unit has been observed in
the current set of adaptation data. The improvement
is consequently rather small when the amount of adap-
tation data is extremely limited.

In transformation-based approach, when the amount
of adaptation data exceeds a certain value, the recog-
nition accuracy often becomes inferior to that obtained
with ML estimation of the model parameters. This is
because a model with a small number of free param-
eters could not fully utilize the potential information
embedded in the large amount of data.

6.1 Adaptation using fixed structure

Because the MAP approaches and the transformation
based methods are not capable of either improving
recognition accuracy when little data are available or
exploiting the information in a large amount of data,
several algorithms supplementing those techniques have
been developed. The Extended MAP (EMAP) method
[53, 65], and the quasi-Bayes technique with corre-
lated mean vectors [19] are extensions of the MAP ap-
proaches. They increase the recognition rates obtained
with a small amount of data by taking into account the
a priori knowledge in the correlation between the pa-
rameters modeling different speech units. For exam-
ple, the pair-wise correlation between the mean vec-
tors could be used to enhance estimation of the mean
parameters of some speech units even if they are not
directly observed in the adaptation data and therefore
the recognition rates are significantly improved [19].
Although these methods are in theory quite general,



they need to impose some approximation in practice
because it is difficult to estimate such correlations pre-
cisely when the amount of training data is small. In
[563, 65], for example, the model parameter space was
divided into several subspaces, the ideal number might
depend on the amount of adaptation data available.

It is also possible to extend the known ML tech-
niques, such as MLLR to incorporate the MAP esti-
mation criterion. The recently proposed mazimum a
posteriori linear regression (MAPLR) [52] algorithm
improves MLLR in a way similar to MAP enhance-
ment over ML for HMM parameter estimation. Combi-
nations of MAP and transformation-based approaches
have also been studied intensively ([10, 8, 56, 57]). No-
table examples were in combining MLLR and MAP
[10] and combining MAP and VFS [56, 57]. Chien et
al. [8] reported that significantly better recognition
accuracy can be obtained by combining MAP and SM
with an iterative process.

It should be noted that Furui [13] has already devel-
oped an unsupervised adaptation method that utilizes
a hierarchical structure for vector quantization.

6.2 Adaptation using flexible structure

The shortcoming of these combined methods is the use
of fixed structures, i.e. fixed ways of parameter tying,
in the acoustic space. Therefore they have only been
shown useful with adaptation data sizes within a nar-
row range. To alleviate this problem, a tree structure
has been used in adjusting the number of layers in a
tree and the degree of parameter tying according to
the amount of available data (e.g. [47, 48]).

Recently, Shinoda and Lee proposed structural Bay-
es adaptation framework that achieves the two desired
objectives mentioned earlier. In this approach, we take
advantage of the nice asymptotic property of MAP es-
timation for large size adaptation and the flexible pa-
rameter tying strategy in a tree for small sample adap-
tation.

For example, in structural mazimum a posteriori
(SMAP) algorithm [49, 50, 51], the prior knowledge in
a tree node is used to construct prior density needed
for MAP estimation of all the parameters in the suc-
cessive child nodes. 20Three key steps are required in
formulating the proposed SMAP approach. They are
described in the next three Sections. First, a tree with
a uniform structure is constructed to characterize the
acoustic space represented by the HMM parameters.
Next, given all the density clusters used to character-
ize nodes in a tree, a Gaussian density is estimated,
which summarize all the Gaussian components in the
cluster so that the likelihood of a sequence of observa-
tion vectors representing the adaptation data can be
evaluated at the node level and therefore the MAP es-
timate at any node in the tree can be computed. For
the third step, the prior density at each tree node needs
to be defined. In this step, hierarchical prior evolution
approzrimation is used, in which it is assumed that the
hyperparameters charactering the prior density at each
node are evaluated based on the knowledge embedded
in the prior density of its parent node.

Recently this structural Bayes approach has been
also combined with MAPLR approach (SMAPLR [52])
and proved to be effective.

7 Model Selection

In model selection scheme, a number of models pre-
pared beforehand, and the optimal model for a new
speaker is selected. Speaker clustering (e.g., [24, 36])
has been mostly employed in this scheme, while some
novel techniques has been recently developed.

7.1 Eigenvoice

Recently Eigenvoice approach [25, 26] has been pro-
posed for speaker adaptation. In this approach, first
the speaker-dependent models from many speakers are
provided, and then, the principle component analy-
sis (PCA) is carried out for model parameters of each
speaker model, and the lower order eigen-vectors are
selected as eiganvoices. For a new speaker, the weight
for each eigenvoice are estimated in a maximum-likeli-
hood estimation using a small amount of adaptation
data.

It should be noted that, since the model parame-
ters for each speaker models are usually very large, it
is almost impossible to use all of them. The param-
eters used for PCA has to be carefully selected from
the model parameters. The Gaussian mean vectors of
single-Gaussian monophone models are often used.

This method is proved to be significantly useful
especially when the adaptation data available is ex-
tremely small [4, 27]. It should be noted that the
method in this category are also effective as a boot-
strap for the model adaptation methods such as MAP
or MLLR (e.g. [7, 22, 58]).

8 Feature compensation

8.1 CMN and VTLN

In feature compensation, features that are dependent
on individual speakers or channels are subtracted from
observed features. Extensive studies have been con-
ducted on cepstrum mean normalization (CMN) [1]
and vocal tract length normalization (VTLN) [12].

In CMN, the long-term average of the cepstrum is
subtracted from the cepstrum of each data frame. This
helps eliminate changes created not only by differences
among individual speakers, but also by environmental
noise and channel changes, for which changes are much
slower than the changing phonetic features of speech
itself.

Since vocal tract length differs from speaker to speak-
er, so do the formant frequencies in the power spectrum
for each speaker. In VTLN, vocal tract lengths are es-
timated using each speaker’s spectrum, but since it
is difficult to precisely estimate a vocal tract length
from a spectrum, some studies have used a maximum-
likelihood VTLN (ML-VTLN) selection method [29,
59, 61, 64]. With this method, a number of param-



eters, each of which represents a different vocal tract
length, are prepared beforehand, and the parameter
that maximizes the likelihood of the data is selected.

8.2 Speaker Adaptive Training (SAT)

A method called speaker adaptive training (SAT) has
recently come into frequent use [2, 21, 37, 60]. Here, so
long as speaker adaptation will always be carried out
for each speaker, a standard-speaker-dependent model
(i.e., a speaker-dependent model based on the speech
of a standard speaker) will be more appropriate for use
as the initial model than a speaker-independent model
(i.e., a model representing variations in the utterances
of a large number of speakers). In SAT, the parameters
for a standard-speaker-dependent model are estimated
in the following process. First, a mapping from the
parameters of the model created for each individual
speaker to those of an initial model is estimated. Sec-
ond, this estimated mapping is used to map the utter-
ance data for each speaker. Third, this mapped data is
used to train the standard-speaker-dependent model.
This process is iterated until convergence. While an
affine transformation is often used for the mapping,
since the number of parameters to be estimated is rel-
atively large, it is difficult to precisely estimate its pa-
rameters when the number of utterances is small.

Recently, cluster adaptive training (CAT) [15] has
been proposed. In this method, more than one mod-
els constructed by speaker clustering are employed for
SAT, and the models themselves and the weights be-
tween them are simultaneously estimated.

Both feature compensation and SAT remove the
variations in input speech data caused by differences
in individual speaker characteristics. The effective-
ness of these methods depends mainly on the method
used to conduct the mapping, for which precise estima-
tion needs to be achieved on the basis of only a small
amount of data from each speaker.

9 Conclusion

In this paper, analytic methods for model adaptation
such as Jacobian Adaptation and Vector Field Smooth-
ing has been mainly discussed and followed by a review
of other major methods. Analytic approaches provides
simple, easy-to-use, and efficient alogorithms for model
adaptation to multiple factors.
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