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ABSTRACT

This paper deals with the problem of the underdetermined blind
separation and tracking of moving sources. In practical situation-
s, sound sources such as human speakers can move freely and so
blind separation algorithms must be designed to track the temporal
changes of the impulse responses. We propose solving this prob-
lem through the posterior inference of the parameters in a generative
model of an observed multichannel signal, formulated under the as-
sumption of the sparsity of time-frequency components of speech
and the continuity of speakers’ movements. Specifically, we de-
scribe a generative model of mixture signals by incorporating a gen-
erative model of a time-varying frequency array response for each
source, described using a path-restricted hidden Markov model (H-
MM). Each hidden state of the present HMM represents the direc-
tion of arrival (DOA) of each source, and so we call it a “DOA-
HMM.” Through the posterior inference of the overall generative
model, we can simultaneously track the DOAs of sources, separate
source signals and perform permutation alignment. The experiment
showed that the proposed algorithm provided a 6.20 dB improve-
ment compared with the conventional method in terms of the signal-
to-interference ratio.

Index Terms— Underdetermined blind separation, moving
sources, direction of arrival, hidden Markov model, variational
inference

1. INTRODUCTION

Blind source separation (BSS) refers to a technique for separating
out individual source signals from microphone array inputs when
the transfer characteristics between the sources and microphones are
unknown. The best-known commercial application of BSS tech-
niques is their use in teleconferencing systems. In practical situ-
ations, sound sources and microphones are likely to move during
sound recording, and the transfer characteristics between the sources
and the microphones can change accordingly. Many conventional B-
SS algorithms have been developed on the assumption that the array
response is time-invariant, and thus they do not work satisfactorily
when the sources or microphones move. This paper deals with a B-
SS problem in a situation where the array response has the potential
to change over time according to the movements of the sources.

To solve BSS problems, it is generally necessary to make some
assumptions about the sources, and formulate an appropriate op-
timization problem based on criteria designed according to those
assumptions. For example, if the observed signals outnumber the
sources, we can employ independent component analysis (ICA) [1]
by assuming that the sources are statistically independent of each
other. However, in an underdetermined case, the independence as-
sumption is too weak to allow us to determine a unique solution and
so directly applying ICA will not work well.

One successful approach for underdetermined BSS is to utilize
the fact that the time-frequency components of speech are near ze-
ro at most of the time-frequency points [2–9]. This implies that the
time-frequency components of speech rarely overlap each other even
when multiple speakers are speaking simultaneously. Hence, the
main focus of this approach is how to design a time-frequency mask
with which we can extract only the components of target speech from
the mixture. To exploit the sparse nature of speech, we must convert
observed signals to a time-frequency representation. In contrast to a
time domain formulation of the BSS problem, a time-frequency do-
main formulation requires us to solve an additional problem called
the permutation alignment problem. That is, we must group together
the separated components of different frequency bins that are con-
sidered to originate from the same source in order to construct a
separated signal. To solve the BSS and permutation alignment prob-
lems simultaneously, we have previously proposed constructing a
hierarchical generative model consisting of generative models of an
observed signal and the array response for each source. This model
has allowed us to perform source separation, permutation alignmen-
t and direction-of-arrival estimation of the sources simultaneously
through the posterior inference [8]. However, this approach has re-
lied on the assumption of fixed source positions.

This paper proposes extending our previous approach to deal
with an underdetermined BSS problem allowing for moving sources.
Specifically, we formulate a generative model of mixture signals by
incorporating a generative model of the time-varying frequency ar-
ray response for each source, described using a path-restricted hid-
den Markov model (HMM). Each hidden state of the present HMM
represents the direction of arrival (DOA) of each source, and thus we
call it a “DOA-HMM.” Through the posterior inference of the pro-
posed generative model, we can simultaneously track the DOAs of
sources, separate source signals and perform permutation alignmen-
t. Sec. 2 reviews our previous generative model designed under a
static source position assumption [8] and Sec. 3 extends this model
to allow for moving sources by introducing a DOA-HMM.

2. GENERATIVE MODEL FOR STATIC SOURCES

2.1. Mixing model

First we consider a situation where I fixed source signals are record-
ed by M microphones. Here, let ym(ωk, tl) ∈ C be the short-time
Fourier transform (STFT) component observed at the m-th micro-
phone, and si(ωk, tl) ∈ C be the STFT component of the i-th
source. 1 ≤ k ≤ K and 1 ≤ l ≤ L are the frequency and time
indices, respectively. If we assume that the length of the impulse re-
sponse from a source to microphones is sufficiently shorter than the
frame length of the STFT, the observed signal can be approximated
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fairly well by an instantaneous mixture in the frequency domain:

y(ωk, tl) =

I∑
i=1

ai(ωk)si(ωk, tl) + n(ωk, tl), (1)

where y(ωk, tl) = (y1(ωk, tl), . . . , yM (ωk, tl))
T ∈ CM and

s(ωk, tl) = (s1(ωk, tl), . . . , sI(ωk, tl))
T ∈ CI . ai(ωk) denotes

the frequency array response for source i at frequency ωk, which
is assumed to be time-invariant throughout this section. n(ωk, tl)
is assumed to contain all kinds of components such as background
noise and reverberant components, which cannot be represented by
the instantaneous mixture representation.

We now utilize the sparseness of speech and assume that only
one source is active in each time-frequency bin. By using zk,l ∈
{1, . . . , I} to denote the (unknown) active source index at time-
frequency bin (ωk, tl), Eq. (1) can be rewritten as

y(ωk, tl) = azk,l(ωk)s(ωk, tl) + n(ωk, tl). (2)

Notice that the subscript i is dropped from si(ωk, tl) in Eq. (2) as
it is no longer necessary since we are assuming si(ωk, tl) = 0 for
i ̸= zk,l. For convenience of notation, we hereafter use subscripts k
and l to indicate ωk and tl respectively.

2.2. Generative process of observed signals
Here we describe the generative process of an observed signal based
on Eq. (2). We assume that the noise component nk,l follows a com-
plex normal distribution with mean 0 and covariance Σ

(n)
k . Then,

from Eq. (2), yk,l is also normally distributed such that

yk,l|a1:I,k, sk,l, zk,l ∼ NC(yk,l;azk,l,ksk,l,Σ
(n)
k ), (3)

conditioned on a1:I,k = {a1,k, . . . ,aI,k}, sk,l and zk,l, where
NC(x;µ,Σ) ∝ exp(−(x − µ)HΣ−1(x − µ)). Moreover, we as-
sume that zk,l derives from a discrete uniform distribution indepen-
dently among all k and l.

2.3. Generative process of frequency array responses
We now describe the generative process of the frequency array re-
sponse ai,k by introducing a latent variable indicating the DOA of
each source.

Thus far we have treated ai,k as an independent parame-
ter across k. If the index i indicates an identical source across
ω1, . . . , ωK , ai,k will have a certain structure that can be described
using the property of acoustic wave propagation. We therefore ex-
pect that the incorporation of an appropriate constraint into ai,k

would help solve both the permutation alignment problem and the
frequency-wise source separation problem simultaneously through
parameter inference. If each source is assumed to be located far from
the microphones so that the signal can be treated approximately as
a plane wave, the time difference between the microphones depends
only on the DOA of the source. Since the time delay between two
microphones corresponds to the phase difference of the frequency
response of the microphone array, the complex array response can be
expressed explicitly by using the DOAs. Specifically, with M = 2
microphones, the complex array response for a source at direction θ
such that 0 ≤ θ ≤ π is defined as a function of ω depending on θ

h(θ, ω) =

[
1

eȷωB cos θ/C

]
, (4)

where ȷ is the imaginary unit, B [m] is the distance between the two
microphones, and C [m/s] is the speed of sound. If the DOA θi of
source i is known, the frequency array response ai,k should be equal

to h(θi, ωk). Since the DOAs are unobservable, we regard the DOA
of each source as a latent variable and further consider describing its
generative process.

We now introduce a discrete set of D possible directions,
ϑ1, . . . , ϑD , which are all assumed to be constants. For instance,
ϑd is defined as ϑd = (d − 1)π/D, (d = 1, . . . , D), which means
dividing π into D equal angels. We then assume that each source
signal propagates from one of these directions. First, we consider the
generative process of the DOA θi of source i. For each source i, an
index ci of direction is drawn according to a categorical distribution
ρi = (ρi,1, . . . , ρi,D)

ci|ρi ∼ Categorical(ci;ρi), (5)

where Categorical(x;y) = yx. Given ci, θi is given as ϑci . S-
ince ai,k may deviate from h(ϑci , ωk) due to such factors as the
plane wave assumption and the narrow band instantaneous mix-
ture approximation, we assume that the frequency array response
ai,k is generated from a complex normal distribution with mean
h(ϑci , ωk), given ci,

ai,k|ci ∼ NC(ai,k;h(ϑci , ωk),Σ
(a)
k ), (6)

where Σ
(a)
k denotes the covariance of the complex normal distribu-

tion, which is assumed to be a constant.

3. GENERATIVE MODEL FOR MOVING SOURCES

In the model described in Sec. 2, the position of each source is
assumed to be fixed and hence the frequency array response ai,k

does not depend on time l. However, in practical situations, sound
sources can move during sound recording and so the frequency ar-
ray response ai,k may vary accordingly. To allow a time-varying
frequency array response, we represent the frequency array response
as a time sequence ai,k,1, . . . ,ai,k,L. Eqs. (2), (3) should thus be
rewritten as

yk,l = azk,l,k,lsk,l + nk,l, (7)

yk,l|a1:I,k,l, sk,l, zk,l ∼ NC(yk,l;azk,l,k,lsk,l,Σ
(n)
k ). (8)

In the same way, we replace the DOA indicator variable ci with a
time sequence ci,1, . . . , ci,L and assume

ai,k,l|ci,l ∼ NC(ai,k,l;h(ϑci,l , ωk),Σ
(a)
k ). (9)

Now, if we simply treat ci,1, . . . , ci,L as independent free variables
we must solve a BSS problem independently for each time l. This
implies the need to solve another permutation problem in the time
direction. Namely, we must first solve source separations in a frame-
by-frame manner and then group together the separated signals over
all l’s that are considered to originate from the same source. How-
ever, it would be better if we could join these two processes, as they
are intrinsically interdependent. To solve the permutation alignment
in the time direction, frame-by-frame source separation and permu-
tation alignment in the frequency direction simultaneously, we need
certain assumptions about the time sequence of the DOAs.

Here we assume that each source moves continuously and thus
the DOA of each source varies continuously. That is, the DOA of
a source at time l is assumed to be close to that at time l − 1.
To incorporate this assumption into our generative model, we pro-
pose modeling the time sequence of the frequency array respons-
es ai,k,1, . . . ,ai,k,L using an HMM in which the direction indices
d = 1, . . . , D are regarded as the hidden states (Fig. 1). Thus, E-
q. (9) can be seen as a state emission density. The state sequence
ci,1, . . . , ci,L follows a Markov chain:

ci,l|ci,l−1 ∼ Categorical(ci,l;ρci,l−1
), (10)
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Fig. 1. The time-varying frequency array response for each source is
modeled by an HMM. The DOA indices d = 1, . . . , D correspond to
the hidden states and the time sequence of frequency array responses
ai,k,1, . . . ,ai,k,L corresponds to the output sequence of the HMM,
respectively.

where ρd = (ρd,1, . . . , ρd,D) denotes the transition probability of
state d to each state 1, . . . , D, and ρ = (ρd,d′)D×D denotes the
transition matrix. Note that we can straightforwardly constrain the
DOAs to be continuously time-varying by setting the transition prob-
abilities from state d to states d, d − 1 and d + 1, respectively, at
reasonably large values. Overall, our new generative model is given
by Eqs. (8), (9) and (10).

4. APPROXIMATE POSTERIOR INFERENCE

4.1. Variational Bayesian Approach
In this section, we describe an approximate posterior inference algo-
rithm for our generative model based on variational inference. The
random variables of interest in our model are A = a1:I,1:K,1:L,
S = s1:K,1:L, Z = Z1:K,1:L and C = c1:I,1:L. We denote the en-
tire set of the above parameters as Θ. In the following, ρ, Σ(n)

1:K and
Σ

(a)
1:K are constants that are determined experimentally. Our goal is

to compute the posterior

p(Θ|Y ) =
p(Y ,Θ)

p(Y )
, (11)

where Y = y1:K,1:L is a set consisting of the time-frequency com-
ponents of observed multichannel signals. By using the conditional
distributions defined in Sec. 2 and 3, we can write the joint distribu-
tion p(Y ,Θ) as

p(Y ,A,S,Z,C) = p(Y |A,S,Z)p(Z)p(A|C)p(C), (12)

but to obtain the exact posterior p(Θ|Y ), we must compute p(Y ),
which involves many intractable integrals.

We can express this posterior variationally as the solution to an
optimization problem:

argmin
q∈Q

KL(q(Θ)||p(Θ|Y )), (13)

where KL(·∥·) denotes the Kullback-Leibler (KL) divergence be-
tween its two arguments, i.e.,

KL(q(Θ)∥p(Θ|Y )) =

∫
q(Θ)log

q(Θ)

p(Θ|Y )
dΘ. (14)

Indeed, if we let Q be the family of all distributions over Θ, the
solution to the optimization problem is the exact posterior p(Θ|Y ),
since KL divergence is minimized when its two arguments are ex-
actly equal. Of course, solving this optimization problem is just as

intractable as directly computing the posterior. Although it may ap-
pear that no progress has been made, restricting q(Θ) to belong to a
family of distributions with a simpler form than p(Θ|Y ) allows us
to obtain principled approximate solutions.

For our model, we define the set of approximate distributions Q
as those that factor as follows:

Q = {q : q(A)q(S)q(Z)q(C)}. (15)

This approximation is often called a naive mean-field approximation.

4.2. Coordinate Ascent
We now present an algorithm for solving the optimization problem
described in (12) and (14). Unfortunately, the optimization problem
is non-convex, and it is difficult to find the global optimum. How-
ever, we can use a simple coordinate ascent algorithm to find a local
optimum. Note that (13) can be written as

KL(q(Θ)∥p(Θ|Y )) =

∫
q(Θ)log

q(Θ)

p(Y ,Θ)
dΘ+ log p(Y ).

(16)

As the log evidence log p(Y ) is fixed with respect to q(Θ), minimiz-
ing the first term, which is known as the (negative) variational free
energy, amounts to minimizing the KL divergence of p(Θ|Y ) from
q(Θ). In the mean-field approximation of the posterior, the algorith-
m can optimize one factor at a time while fixing all other factors.
It can be shown using the calculus of variations that the “optimal”
distribution for each of the factors can be expressed as:

q̂(X) ∝ expEΘ\X [log p(Y ,Θ)], (17)

where X indicates one of the factors and EΘ\X [logp(Y ,Θ)] is the
expectation of the joint probability of the data and latent variables,
taken over all variables except X . The update equations for the
variational distributions are given in the following form:

q̂(A) =
∏
i,k,l

NC(ai,k,l;mi,k,l,Γi,k,l), (18)

q̂(S) =
∏
k,l

NC(sk,l;µk,l, σ
2
k,l), (19)

q̂(Z) =
∏
k,l

q̂(zk,l), q̂(zk,l = i) = ϕi,k,l, (20)

where

Γ−1
i,k,l =(ϕi,k,l(|µk,l|2 + σ2

k,l))Σ
(n)−1
k +Σ

(a)−1
k , (21)

mi,k,l =Γi,k,l(Σ
(n)−1
k ϕi,k,lµ

∗
k,lyk,l

+Σ
(a)−1
k

∑
d

q̂(ci,l = d)h(ϑd, ωk)), (22)

1

σ2
k,l

=
∑
i

ϕi,k,ltr[(mi,k,lm
H
i,k,l + Γi,k,l)Σ

(n)−1
k ], (23)

µk,l =σ2
k,l(

∑
i

ϕi,k,lm
H
i,k,l)Σ

(n)−1
k yk,l, (24)

φi,k,l =exp(2Re[µk,ly
H
k,lΣ

(n)−1
k mi,k,l]

− (|µk,l|2 + σ2
k,l)tr[(mi,k,lm

H
i,k,l + Γi,k,l)Σ

(n)−1
k ]),

(25)

ϕi,k,l =
φi,k,l∑
i φi,k,l

. (26)
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For updating q̂(C), we can use the forward-backward algorithm.
The update equation of q̂(C) is given as:

q̂(C) =
∏
i,l

α(ϑci,l)β(ϑci,l)∑
ϑci,l

α(ϑci,l)β(ϑci,l)
, (27)

where α and β denote the forward and backward variables, that can
be computed using the emission probabilities q̂(ai,k,l|ϑd):

α(ϑci,l) = q̂(ai,k,l|ϑci,l)
∑

ϑci,l−1

α(ϑci,l−1)ρci,l−1,ci,l , (28)

β(ϑci,l) =
∑

ϑci,l+1

β(ϑci,l+1)q̂(ai,k,l+1|ϑci,l+1)ρci,l,ci,l+1 . (29)

In the sense of variational inference, we can obtain “optimal”
q̂(ai,k,l|ϑd) as:

q̂(ai,k,l|ϑd) ∝expEai,k,l [log p(ai,k,l|ϑd)]

=exp(−tr[(mH
i,k,lmi,k,l + Γi,k,l)Σ

(a)−1
k ]

+ 2Re[h(ϑd, ωk)
HΣ

(a)−1
k mi,k,l]

− h(ϑd, ωk)
HΣ

(a)−1
k h(ϑd, ωk)). (30)

Note that q̂(ai,k,l) and p(ai,k,l|ϑd) are both expressed as complex
normal distributions.

Finally, the STFT components of the i-th separated signal can
be obtained by multiplying µk,l by ϕi,k,l. Since q(Θ) is an approx-
imation of the true posterior p(Θ|Y ), ϕi,k,lµk,l corresponds to an
approximation of the minimum mean square error estimator of the
i-th source signal, i.e., ŝi,k,l = E

[
1[z,k,l = i]sk,l|Y

]
≃ E[z,k,l =

i|Y ]E[sk,l|Y ] = ϕi,k,lµk,l, where 1[·] denotes the indicator func-
tion that takes the value 1 if its argument is true and 0 otherwise.

5. EXPERIMENTAL EVALUATION

We evaluated the performance of the present method in terms of the
ability to separate moving sources and track their DOAs. We used
ten mixed stereo signals as the experimental data, each of which
we obtained by mixing the speech signals of one static female s-
peaker and two moving male speakers. The static source was ob-
tained from the ATR Japanese speech database [10] and was con-
volved with the measured room impulse response from the RWCP
database [11] (in which the distance between the microphones was
2.83 cm and the reverberation time was 0 ms). We selected the two
moving sources from ten different moving sources obtained from the
RWCP database [11]. The sampling rate was 16 kHz. To compute
the STFT components of the observed signal, the STFT frame length
was set at 64 ms and a Hamming window was used with an overlap
length of 16 ms. Σ(n)

k and Σ
(a)
k were set at I and 101.5 × I , respec-

tively. D was set at 180. In the experiments, we fixed source signal
s(ωk, tl) as y1(ωk, tl). This may be reasonable since the noise was
relatively lower than the speech, and could help prevent s(ωk, tl)
from being trapped in local optima. Moreover, our preliminary ex-
periments revealed that q̂(C) was likely to be trapped in local optima
due to the spatial aliasing that occurs at high frequencies. To avoid
this, we adopted the following procedure: we first ran the variation-
al inference algorithm using only the low-frequency region of the
observed signals, after which we gradually increased the frequency
range to the Nyquist frequency during the iterations. The variational
inference algorithm was run for 100 iterations. q̂(z1:K,1:L = i) was
initially set equally at 1/3 for i = 1, 2, 3. As for q̂(c1:3,1:L = d),
q̂(c1,1:L = 46), q̂(c2,1:L = 91) and q̂(c3,1:L = 136) were set at rel-
atively large values. The estimated DOAs were obtained from q̂(C)
as the most possible direction at each time. We chose the method

Table 1. The average output SIRs and standard deviations of the
three sources by the conventional and proposed methods.

SIR(±SD) [dB]
moving

source A
moving
source B fixed source

Proposed 4.82(±3.94) 6.07(±3.24) 8.16(±1.50)
Conventional -1.10(±1.37) -2.00(±1.70) 3.55(±0.78)

Fig. 2. Example of the ground truth DOA trajectories (dashed lines)
and the estimated DOA trajectories (solid lines).

proposed in [8] as a comparison. This method assumed that the
source directions were fixed. As an evaluation measure, we used
the signal-to-interference ratio (SIR) [12]. The SIR is expressed in
decibels (dB), and a higher SIR indicates superior quality. The aver-
age input SIRs(±SD) dB of moving source A, moving source B and
the fixed source were -4.81(±1.15), -5.22(±1.03) and 0.29(±0.78)
dB, respectively. The SIRs were calculated until the time at which
the shortest signal of the three source signals was finished.

Table 1 shows the average SIRs and standard deviations for the
ten mixed signals obtained by the conventional and proposed meth-
ods. The average SIRs of the proposed method were superior to
those of the conventional method for each signal, especially for mov-
ing signals. The total average of the SIRs obtained with the pro-
posed method was 6.20 dB more than that obtained with the con-
ventional approach. These results show the effectiveness of the pro-
posed method for BSS of moving sources. Examples of separat-
ed signals are available at http://www.hil.t.u-tokyo.ac.
jp/˜higuchi/demo/Examples.htm. In this experiment, the
DOAs of different sources hardly overlapped each other. Another ex-
periment revealed that if the DOAs of different sources overlapped
each other, the proposed method did not work well because it sepa-
rates each signal based on its DOA. Fig. 2 shows a DOA estimation
result. The DOAs were almost all estimated correctly from 0.5 to
3.0 seconds, when all of the speakers were speaking.

6. CONCLUSION

This paper proposed a novel BSS approach that simultaneously esti-
mates the directions of moving sources, separates the sources based
on sparseness of speech and performs permutation alignment. Fo-
cusing on the fact that the DOAs of a source tend to change grad-
ually in practical situations, we modeled a time-varying frequency
array response for each source as a path-restricted HMM. Each hid-
den state of the HMM represented the DOA of each source and we
integrated the assumption of the smoothness of the DOA into the
transition probabilities of the HMM. The experiment showed that the
proposed algorithm provided a 6.20 dB improvement compared with
the conventional algorithm as regards the signal-to-interference ratio
and estimated the DOAs of sources when two of the three sources
were moving.
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