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Abstract
This paper proposes to introduce a new model called “the multi-
channel factorial hidden Markov Model (MFHMM)” for under-
determined blind signal separation (BSS). For monaural source
separation, one successful approach involves applying non-
negative matrix factorization (NMF) to the magnitude spectro-
gram of a mixture signal, interpreted as a non-negative matrix.
Up to now, multichannel extensions of NMF, which allow for
the use of spatial information as an additional clue for source
separation, have been proposed by several authors and proven
to be an effective approach for underdetermined BSS. This ap-
proach is based on the assumption that an observed signal is a
mixture of a limited number of source signals each of which
has a static power spectral density scaled by a time-varying am-
plitude. However, many source signals in real world are non-
stationary in nature and the variations of the spectral densities
are much richer in time. Moreover, many sources including
speech tend to stay inactive for some while until they switch to
an active mode, implying that the total power of a source may
depend on its underlying state. To reasonably characterize such
a non-stationary nature of source signals, this paper proposes to
extend the multichannel NMF model by modeling the transition
of the set consisting of the spectral densities and the total pow-
er of each source using a hidden Markov model (HMM). By
letting each HMM contain states corresponding to active and i-
nactive modes, we will show that voice activity detection and
source separation can be solved simultaneously through param-
eter inference of the present model. The experiment showed
that the proposed algorithm provided a 7.65 dB improvement
compared with the conventional multichannel NMF in terms of
the signal-to-distortion ratio.
Index Terms: blind signal separation, source activity detection,
a hidden Markov model, non-negative matrix factorization

1. Introduction
Blind source separation (BSS) refers to a technique for sepa-
rating out individual source signals from microphone array in-
puts when the transfer characteristics between the sources and
microphones are unknown. The best-known commercial appli-
cation of BSS techniques is their use in teleconferencing sys-
tems. To solve BSS problems, it is generally necessary to make
some assumptions about the sources, and formulate an appro-
priate optimization problem based on criteria designed accord-
ing to those assumptions. For example, if the observed signals
outnumber the sources, we can employ independent component
analysis (ICA) [1] by assuming that the sources are statistical-
ly independent of each other. However, in an underdetermined
case, the independence assumption is too weak to allow us to
determine a unique solution and so directly applying ICA will
not work well.

For monaural source separation, one successful approach
involves applying non-negative matrix factorization (NMF) to
the magnitude spectrogram of a mixture signal, interpreted as
a non-negative matrix [2, 3]. With this approach, the spectro-
gram of a mixture signal is factorized into the product of a ba-
sis matrix consisting of basis spectra and an activation matrix
consisting of time-varying amplitudes associated with the basis

spectra. An important feature of this approach is that it is ca-
pable of finding a finite set of basis spectra that are considered
to be the dominant elements constituting the observed spectro-
gram, in an unsupervised manner. Up to now, several attempts
have been made to extend this approach to a multichannel case
in order to allow for the use of spatial information as an addi-
tional clue for separation, which have opened a door to a new
promising approach for underdetermined BSS [4, 5]. This ap-
proach is based on the assumption that an observed signal is a
mixture of a limited number of source signals each of which has
a static power spectral density (i.e., the basis spectrum) scaled
by a time-varying amplitude. However, many source signals
in real world are non-stationary in nature and the variations of
the spectral densities are much richer in time. For example, the
sound of a piano note would be more accurately characterized
by a succession of several basis spectra corresponding to “at-
tack,” “decay,” “sustain” and “release” segments than only by
a single basis spectrum. Another important fact is that many
sources including speech tend to stay inactive for some while
until they switch to an active mode. This implies that the to-
tal power of a source may depend on its underlying state. To
reasonably characterize such a non-stationary nature of source
signals, this paper proposes to extend the multichannel NMF
model by modeling the transition of the set consisting of the
spectral densities and the total power of each source using a
hidden Markov model (HMM). With this model, we would be
able to flexibly reflect the time-varying nature of each source
by appropriately specifying or training the transition probabili-
ties prior to analysis. We formulate an entire generative model
of a multichannel mixture signal by incorporating a generative
model of the spectral densities of each source, described using
an HMM. Each hidden state of the HMM represents the state of
the corresponding source. We call this model “the multichannel
factorial hidden Markov model (MFHMM)”.

In general, simultaneous estimation is preferable when sev-
eral estimation problems are interdependent. If we knew when
each source is active and inactive, source separation would be-
come a relatively simple matter. On the other hand, if all the
sources were already separated, voice activity detection would
become a relatively simple matter. This simply implies that the
problems of source separation and voice/source activity detec-
tion are interdependent of each other. It is important to note that
through parameter inference of the present model, we would
be able to simultaneously perform voice activity detection and
source separation based on a unified maximum likelihood crite-
rion.

The remainder of this paper is organized as follows. Sec. 2
formulates a generative model of a multichannel observed sig-
nal and source signals based on the factorial HMM, Sec. 3 de-
scribes a parameter inference algorithm for the present model
and Sec. 4 presents some experimental results.

2. Multichannel factorial HMM
2.1. Mixing model
First we consider a situation where I source signals are recorded
by M microphones. Here, let ym(ωk, tl) ∈ C be the short-
time Fourier transform (STFT) component observed at the m-th
microphone, and si(ωk, tl) ∈ C be the STFT component of the



i-th source. 1 ≤ k ≤ K and 1 ≤ l ≤ L are the frequency and
time indices, respectively. If we assume that the length of the
impulse response from a source to microphones is sufficiently
shorter than the frame length of the STFT, the observed signal
can be approximated fairly well by an instantaneous mixture in
the frequency domain:

y(ωk, tl) =
I∑

i=1

ai(ωk)si(ωk, tl), (1)

where y(ωk, tl) = (y1(ωk, tl), . . . , yM (ωk, tl))
T ∈ CM .

ai(ωk) denotes the frequency array response for source i at
frequency ωk. For convenience of notation, we hereafter use
subscripts k and l to indicate ωk and tl respectively.

2.2. Generative process of observed signals
Here we describe the generative process of an observed signal
based on Eq. (1). If we assume that each source signal follows
a piecewise stationary Gaussian process, then si,k,l follows a
complex normal distribution with mean 0 and covariance σ2

i,k,l,

si,k,l|σ2
i,k,l ∼ NC(si,k,l; 0, σ

2
i,k,l), (2)

where σ2
i,k,l denotes the power spectral density of i-th source at

frequency k and time l. From Eq. (1) and Eq. (2), yk,l is also
normally distributed such that

yk,l|a1:I,k, σ1:I,k,l ∼ NC(yk,l; 0,
∑
i

Ci,kσ
2
i,k,l), (3)

conditioned on a1:I,k = {a1,k, . . . ,aI,k}, σ2
1:I,k,l =

{σ2
1,k,l, . . . , σ

2
I,k,l} where Ci,k = ai,ka

H
i,k and

NC(x;µ,Σ) ∝ exp(−(x − µ)HΣ−1(x − µ)). Ci,k

represents a spatial correlation matrix of the i-th source at
frequency k.

2.3. Generative model for multichannel NMF [4, 5]
In the regular NMF model (see [6]), the power spectra of a
source signal is assumed to be static up to a scale factor. We
can incorporate this assumption into the above model by setting

σ2
i,k,l = wi,khi,l, (4)

where σ2
i,k,l is assumed to be factorized into the product of the

static power spectrum wi,k and the time-varying amplitude hi,l.
The generative model of si,k,l is thus rewritten as

si,k,l|wi,k, hi,l ∼ NC(si,k,l; 0, wi,khi,l), (5)

conditioned on wi,k and hi,l. Since the generative model of
Y = {yk,l}k,l under the assumption Eq. (5) can be viewed
as a natural extension of NMF to a multichannel case, a BSS
approach based on this model is called the multichannel NMF
[4, 5].

2.4. Generative modeling of source signals using HMMs
As described above, the multichannel NMF model roughly as-
sumes that the power spectra of each sound source is static up
to a scale factor. However, many sound sources exhibit dif-
ferent spectra according to underlying “states” of the sources.
For example, the spectra of the sound of a piano note would
be different in “attack,” “decay,” “sustain” and “release” seg-
ments. Another important fact is that many sources including
speech tend to stay inactive for some while until they switch to
an active mode. This implies that the total power of a source
also depends on its underlying state. To reasonably characterize
such a non-stationary nature of source signals, here we propose
to model the sequence of the power spectra and the total powers
of each source using an HMM.

Figure 1: Illustration of the concept of the FHMM.

Now we introduce a latent variable zi,l ∈ {1, . . . , D} to
denote a state of the i-th source at time l. The state sequence
zi,1, . . . , zi,L is assumed to follow a Markov chain:

zi,l|zi,l−1 ∼ Categorical(zi,l;ρzi,l−1
), (6)

where Categorical(x;y) = yx, ρd = (ρd,1, . . . , ρd,D) de-
notes the transition probability of state d to each state 1, . . . , D,
and ρ = (ρd,d′)D×D denotes the transition matrix. Here, we
assume that hi,l follows a gamma distribution with hyperpa-
rameters determined according to zi,l,

hi,l|zi,l ∼ Gamma(hi,l;αzi,lβzi,l), (7)

where α1:D and β1:D are the shape and scale parameters of a
gamma distribution, and Gamma(x;α, β) = xα−1e−x/β

Γ(α)βα . As
we want hi,l to take a small value when zi,l is the “inactive”
(i.e., silent) state, we set the hyperparameters of the gamma dis-
tribution of that state so that it becomes a sparsity-inducing dis-
tribution. As regards the gamma distributions of the remaining
states, we consider setting the hyperparameters so that they be-
come uniform distributions. In particular, we consider setting
α and β at 1 and 10−2 respectively for the inactive state, and
at 1 and 1020 respectively for the active states. We expect that
this setting allows us to solve source separation and voice ac-
tivity detection in a cooperative manner. Let us use wi,k,d to
denote the power spectrum of the i-th source at state d. The
power spectrum of the i-th source at time l is also assumed to
be determined according to zi,l. Thus, the generative model of
si,k,l is eventually written as

si,k,l|wi,k,1:D, hi,l, zi,l

∼ NC(si,k,l; 0, wi,k,zi,lhi,l). (8)

Since the generative of yk,l contains multiple HMMs associated
with the underlying sources, the overall model can be viewed as
a Factorial HMM. Fig. 1 shows an illustration of the proposed
FHMM. Note that we can integrate an assumption that the sig-
nal tend to stay non-active for some time by setting the transi-
tion probabilities of self-transitions at reasonably large values
in a specific state of the HMM. If we assume the emission prob-
abilities of the HMMs as uniform distributions, our overall gen-
erative model is given by Eqs. (6) and

yk,l|a1:I,k, w1:I,k,1:D, h1:I,l, z1:I,l

∼ NC(yk,l; 0,
∑
i

Ci,kwi,k,zi,lhi,l), (9)

conditioned on a1:I,k,w1:I,k,1:D ,h1:I,l and z1:I,l.

3. Algorithm for parameter estimation
3.1. Objective function
In this section, we describe a parameter estimation algorith-
m for our generative model based on an auxiliary function
method. The random variables of interest in our model are
W = w1:I,1:K,1:D , H = h1:I,1:L,C = C1:I,1:K and Z =



z1:I,1:L . We denote the entire set of the above parameters as Θ.
In the following, ρ is constants that is determined experimen-
tally. Our goal is to compute the posterior

p(Θ|Y ) =
p(Y ,Θ)

p(Y )
, (10)

where Y = y1:K,1:L is a set consisting of the time-frequency
components of observed multichannel signals. By using the
conditional distributions defined in Sec. 2, we can write the
joint distribution p(Y ,Θ) as

p(Y ,Θ) ∝p(Y |Θ)p(H|Z)p(Z). (11)

The objective function is defined as L(Θ) = log p(Θ|Y ). Our
goal is to obtain Θ̂ such that

Θ̂ = argmax
Θ

log p(Θ|Y ). (12)

By using Eqs. (10), (11) and (12), the current optimization
problem can be rewritten as

Θ̂ = argmax
Θ

(
log p(Y |Θ)

+ log p(H|Z) + log p(Z)
)
. (13)

According to the generative model defined in Sec. 2,
log p(Y |Θ) is written as

log p(Y |Θ)

=
∑
k,l

(−M

2
log 2π − 1

2
log |X̂k,l| −

1

2
yk,l

HX̂
−1

k,lyk,l),

(14)

where X̂k,l =
∑

i Ci,kwi,k,zi,lhi,l.

3.2. Optimization algorithm based on an auxiliary function
method
The optimization problem of maximizing L(Θ) with respec-
t to Θ is difficult to solve analytically. However, we can in-
voke an auxiliary function approach to derive an iterative al-
gorithm that searches for the estimate of Θ, as with [5]. To
apply an auxiliary function approach to the current optimiza-
tion problem, the first step is to construct an auxiliary function
L+(Θ,Λ) satisfying L(Θ) = maxΛ L+(Θ,Λ). We refer to Λ
as an auxiliary variable. It can then be shown that L(Θ) is non-
increasing under the updates Θ ← argmaxΘ L+(Θ,Λ) and
Λ ← argmaxΛ L+(Θ,Λ). The proof of this shall be omitted
owing to space limitations. Thus, L+(Θ,Λ) should be designed
as a function that can be maximized analytically with respect to
Θ and Λ. Such a function can be constructed as follows.

L(Θ)

≥L+(Θ,Λ)

=− 1

2

∑
k,l

(∑
i

(
tr(yk,l

Hyk,lRi,k,lC
−1
i,kRi,k,l)

wi,k,zi,lhi,l

+ tr(U−1
k,lCi,k)wi,k,zi,lhi,l

)
+ log |Uk,l| −M

)
+

∑
i,l

(
(αzi,l − 1) log hi,l − hi,l/βzi,l − αzi,l log βzi,l

)
+ log p(Z), (15)

where Ri,k,l and Uk,l are auxiliary variables that satisfy Her-
mitian positive definiteness and

∑
i Ri,k,l = I . We denote the

Figure 2: A spectrogram of the mixed signal.

set of the auxiliary variables as Λ. tr(·) is the trace of a matrix.
The equality L(Θ) = L+(Θ,Λ) is satisfied when

Ri,k,l = Ci,kwi,k,zi,lhi,lX̂
−1

k,l , (16)

Uk,l = X̂k,l. (17)

Therefore, we can monotonically increase L by repeating
the following two steps.

1. Maximizing L+ with respect to R and U .

2. Maximizing L+ with respect to W ,H,C and Z.
Step 1 consists in updating R and U using Eqs. (16) and

(17). In step 2, we can obtain update rules of W ,H,C by
setting the partial derivative of L+ with respect to each of the
parameters at zero. The partial derivatives of L+ with respect
to W and H are given by

∂L+

∂wi,k,zi,l

=
∑
l

(
tr(yk,l

Hyk,lRi,k,lC
−1
i,kRi,k,l)

w2
i,k,zi,l

hi,l

− tr(U−1
k,lCi,k)hi,l

)
, (18)

∂L+

∂hi,l
=

∑
k

(
tr(yk,l

Hyk,lRi,k,lC
−1
i,kRi,k,l)

wi,k,zi,lh
2
i,l

− tr(U−1
k,lCi,k)wi,k,zi,l

)
+ (αzi,l − 1)/hi,l − 1/βzi,l , (19)

respectively. By setting them at zero, we obtain the following
update rules:

wi,k,zi,l ←

√√√√√∑
l

tr(yk,l
Hyk,lRi,k,lC

−1
i,k

Ri,k,l)

hi,l∑
l tr(U

−1
k,lCi,k)hi,l

, (20)

hi,l ←
(αzi,l − 1) +

√
(αzi,l − 1) + 4µi,lνi,l

2µi,l
, (21)

where

µi,l =
∑
k

tr(yk,l
Hyk,lRi,k,lC

−1
i,kRi,k,l)

wi,k,zi,l

, (22)

νi,l =
∑
k

tr(U−1
k,lCi,k)wi,k,zi,l + 1/βzi,l . (23)

The partial derivatives of L+ with respect to C is given by

∂L+

∂Ci,k
=

∑
l

(
C−1

i,kRi,k,lyk,l
Hyk,lRi,k,lC

−1
i,k

wi,k,zi,lhi,l



Figure 3: Examples of spectrogram of signal of a bell (top),
that of separated signal (middle), and its activity detection result
(bottom). Black indicates the state is assigned at the time.

Table 1: The average output SDRs and standard deviations of
the three sources by the conventional and proposed methods.

SDR(±SD) [dB] bell whistle stapler
Proposed 19.92(±11.50) 31.21(±6.69) 16.81(±10.09)

Conventional 13.33(±8.22) 23.37(±4.57) 8.28(±5.98)

−U−1
k,lwi,k,zi,lhi,l

)
. (24)

By setting this at zero, we obtain an algebraic Riccati equation:

Ci,kAi,kCi,k = Bi,k, (25)

where

Ai,k =
∑
l

wi,k,zi,lhi,lX̂
−1

k,l ,Bi,k = Ci,k(
∑
l

wi,k,zi,lhi,l

X̂
−1

k,lyk,l
Hyk,lX̂

−1

k,l )Ci,k. (26)

We can solve this equation by using a method in [5]. We per-
form an eigenvalue decomposition of a 2M × 2M matrix[

0 −Ai,k

−Bi,k 0

]
, (27)

and let e1,i,k . . . eM,i,k be eigenvectors with negative eigenval-
ues. It is guaranteed that there are exactly M negative eigenval-
ues. Then, let us decompose the 2M -dimensional eigenvectors
as

em,i,k =

[
fm,i,k
gm,i,k,

]
(28)

for m = 1 . . .M where fm,i,k and gm,i,k are M -dimensional
vectors. We obtain the update rule for Ci,k as

Ci,k ← Gi,kF
−1
i,k , (29)

where F i,k = [f1,i,k, . . . ,fM,i,k] and Gi,k =
[g1,i,k, . . . , gM,i,k].

L+ is equal up to constant terms to the sum of the log pos-
teriors of HMMs, when viewed as a function of Z. Thus, we
can invoke the Viterbi algorithm to search for the optimal path
zi,1, . . . , zi,L for each i individually. Note that updating W ,
H , C and Z corresponds to solving the problems of blind sig-
nal separation and source activity detection based on a unified
objective function.

4. Experimental evaluation
We evaluated the performance of the present method in terms
of the ability to separate sources and detect their activity. We
used a mixed stereo signal as the experimental data, each of
which we obtained by mixing the non-speech signals (sounds
of a whistle, a bell and a stapler) from the RWCP database[8]

and was convolved with the measured room impulse response
from the RWCP database [8] (in which the distance between
the microphones was 5.85 cm and the reverberation time was 0
ms). Thus, the three signals were artificially located 20◦, 60◦
and 100◦ from the microphones respectively. The sampling rate
was 32 kHz. To compute the STFT components of the observed
signal, the STFT frame length was set at 16 ms and a Hamming
window was used with an overlap length of 8 ms. Fig. 2 shows
a spectrogram of the mixed signal. We set the number of states
of HMMs D as 3. We expected that d = 1 is an inactive s-
tate and d = 2 and 3 are active states, by setting α1 and β1

as 1 and 10−2 respectively, and α2:3 and β2:3 1 and 1020 re-
spectively. the transition probability ρ as ρ1 = (0.9, 0.1, 0),
ρ2 = (0, 0.5, 0.5) and ρ3 = (0.5, 0, 0.5) based on the assump-
tion that a sound source tends to stay inactive. The diagonal ele-
ments of C were initially all set to 1/

√
M , and the off-diagonal

elements were initially set to zero. We first performed the sin-
gle channel NMF based on IS-divergence starting from differ-
ent random initial matrices W and H , then we set the results of
W , H as the initial parameters of W and H . The parameter
estimation algorithm was run for 100 iterations. We chose the
method proposed in [5] as a comparison. The separated signal
ŷi,k,l was obtained by Wiener filtering

ŷi,k,l = wi,k,zi,lhi,lCi,kX̂
−1

k,lyk,l. (30)

As an evaluation measure, we used the signal-to-distortion ratio
(SDR) [9]. The SDR is expressed in decibels (dB), and a higher
SDR indicates superior quality. The input SDRs [dB] of the
bell, the whistle and the stapler were -8.36, 6.64 and -12.78
[dB], respectively.

Table 1 shows the average SDRs and standard deviation-
s for the ten trials obtained by the conventional and proposed
methods. The average SDRs of the proposed method were su-
perior to those of the conventional method for each signal. The
total average of the SDRs obtained with the proposed method
was 7.65 dB more than that obtained with the conventional ap-
proach. These results show the effectiveness of the proposed
method for BSS. Examples of separated signals are available
at http://www.hil.t.u-tokyo.ac.jp/˜higuchi/
demo/Examples_interspeech.htm. Fig. 3 shows ex-
amples of spectrogram of signal of a bell (top), that of separated
signal (middle), and its activity detection result (bottom). The
activities of the bell were almost all estimated correctly. How-
ever, our results also showed that abilities of signal separation
and source activity detection by our method depended on the
first condition of W and H to some extent. As future work, we
plan to solve this kind of problem by learning W and ρ from
a clean signal and apply our proposed method to acoustic event
detection.

5. Conclusion
In this paper we extend our previous approach to a multichan-
nel observed signal and proposes a comprehensive approach to
deal with an underdetermined BSS problem and source activ-
ity detection. Specifically, we describe a generative model of
mixture signals by incorporating a generative model of spec-
tra for each source, using MFHMMs. Each hidden state of the
present HMM represents states of each source such as its activ-
ities. Through the estimation of the parameters of the overall
generative model, we can simultaneously the underdetermined
blind signal separation and source activity detection. The exper-
iment showed that the proposed algorithm provided a 7.65 dB
improvement compared with the conventional method in terms
of the signal-to-distortion ratio.
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