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Abstract—This paper proposes a novel method for simulta-
neously solving the problems of underdetermined blind source
separation (BSS), source activity detection, dereverberation and
direction-of-arrival (DOA) estimation by introducing an exten-
sion of the “multichannel factorial hidden Markov model (MFH-
MM).” The MFHMM is an extension of the multichannel non-
negative matrix factorization (NMF) model, in which the basis
spectra are allowed to vary over time according to the transitions
of the hidden states. This model has allowed us to perform source
separation, source activity detection and dereverberation in a
unified manner. In our previous model, the spatial covariance
of each source has been treated as a model parameter. This
has led the entire generative model to have an unnecessarily
high degree of freedom, and thus the parameter inference has
been prone to getting trapped into undesired local optima. To
reasonably restrict the solution space of the spatial covariance
matrix of each source, we propose to describe it as a weighted
sum of the fixed spatial covariance matrix corresponding to
the discrete set of DOAs. Through the parameter inference, the
proposed model allows us to simultaneously solve the problems of
underdetermined BSS, source activity detection, dereverberation
and DOA estimation. Experimental results revealed that the
proposed method was superior to a previous method in terms of
the signal-to-distortion ratios of separated signals.
Index Terms: source separation, dereverberation, hidden
Markov model, non-negative matrix factorization, DOA

I. INTRODUCTION
Blind source separation (BSS) refers to a technique for

separating out individual source signals from microphone array
inputs when the transfer characteristics between the sources
and microphones are unknown. To solve BSS problems, it
is generally necessary to make some assumptions about the
sources, and formulate an appropriate optimization problem
based on criteria designed according to those assumptions.
For example, if the observed signals outnumber the sources,
we can employ independent component analysis (ICA) [1]
by assuming that the sources are statistically independent
of each other. However, in an underdetermined case, the
independence assumption is too weak to allow us to determine
a unique solution and so directly applying ICA will not work
well. For monaural source separation, one successful approach
involves applying non-negative matrix factorization (NMF) to
the magnitude spectrogram of a mixture signal, interpreted
as a non-negative matrix [2][3]. Up to now, several attempts
have been made to extend this approach to a multichannel
case in order to allow for the use of spatial information as an
additional clue for separation, which have opened a door to
a new promising approach for underdetermined BSS [4][5].
Moreover, we previously proposed the multichannel factorial
hidden Markov model [6], where non-stationary spectra of a
source are modeled by using a HMM. Furthermore, we extend-
ed the MFHMM for dereverberation [7], by approximating
the multichannel observed signal recorded in a reverberant
condition as a form of a convolution of the frequency array
response and the source signal in the time-frequency domain.
Thus, we modeled the impulse response out of the frame of
STFT by introducing a time sequence of frequency response
arrays in the time-frequency domain. However, in the model
we mentioned above, we do not make any assumption for
a spatial correlation matrix and the degree of freedom of
the spatial correlation matrix is very high. This sometimes

makes the spatial correlation matrix trapped into undesirable
local optima. Generally, it is known that the spatial correlation
matrix of the direct sound of a point source has a certain
structure described by the source ’s direction. One way to
model the spatial correlation matrix would be to use a mixture
model of matrices parametrized by all possible direction of
arrivals (DOAs), as in [8][9]. Another way would be to use
a linear sum of those matrices, as in [10]. For reverberant
conditions, the latter model would be more relevant than the
former, since the spatial correlation matrix could be contam-
inated by the components of early reflections. In this paper,
we incorporate this model of a spatial correlation matrix into
our previous model, and approximate the impulse response
both within and out of the frame of the STFT in the time-
frequency domain. Through the parameter inference of our
new generative model, we can simultaneously perform source
separation, source activity detection, dereverberation and DOA
estimation based on a unified maximum likelihood criterion.

II. MULTICHANNEL FACTORIAL HIDDEN
MARKOV MODEL [7]

A. Mixing model
First we consider a situation where I source signals are

recorded by M microphones. Here, let ym(t) ∈ R be the
observed signal at the m-th microphone, and si(t) ∈ R be the
signal of the i-th source. The observed signal can be written
in the time domain:

y(t) =

I∑
i=1

∞∑
τ=0

ai(τ)si(t− τ), (1)

where y(t) = (y1(t), . . . , yM (t))T ∈ RM and ai(t) =
(a1,1(t), . . . , a1,M (t))T ∈ RM . ai,m(t) denotes the impulse
response between source i and microphone m. In a reverberant
condition, the length of the impulse responses are relatively
long and so an instantaneous mixture approximation is not
always true. Therefore we approximately express the observed
signals as a form of a convolution of the frequency array
response and the source signal in the time-frequency domain.

y(ωk, tl) ≈
I∑

i=1

T∑
τ=0

ai(ωk, τ)si(ωk, tl − τ). (2)

Here, let ym(ωk, tl) ∈ C be the short-time Fourier transform
(STFT) component observed at the m-th microphone, and
si(ωk, tl) ∈ C be the STFT component of the i-th source.
1 ≤ k ≤ K and 1 ≤ l ≤ L are the frequency and time
indices, respectively. ai(ωk, τ) denotes the frequency array
response for source i at frequency ωk and time τ . 0 ≤ τ ≤ T
is the time index of the frequency array response in the
time-frequency domain. Note that ai(ωk, 1 : T ) denote the
frequency array responses which correspond to the impulse
responses out of the frames of the STFT. This approximation
is useful for dereverberation [11] and the validity of the
approximation is experimentally shown. For convenience of
notation, we hereafter use subscripts k and l to indicate ωk
and tl respectively.



B. Generative process of observed signals
Here we describe the generative process of an observed

signal based on Eq. (2). We assume that the source signal
si,k,l follows a complex normal distribution with mean 0 and
covariance σ2

i,k,l.

si,k,l|σi,k,l ∼ NC(si,k,l; 0, σ
2
i,k,l), (3)

Then, from Eq. (2), yk,l is also normally distributed such that

yk,l|a1:I,k,0:T , s1:I,k,l−T :l

∼ NC(yk,l; 0,
∑
i,τ

Ci,k,τσ
2
i,k,l−τ ), (4)

conditioned on a1:I,k,0:T and s1:I,k,l−T :l where Ci,k,τ =
ai,k,τa

H
i,k,τ and NC(x;µ,Σ) ∝ exp(−(x−µ)HΣ−1(x−µ)).

Ci,k,τ is often called a spatial correlation matrix.

C. Generative modeling of source signals using HMMs
We now describe the generative process of the source signal

si,k,l using a HMM. First, we assume each signal has a specific
spectrum and utilize NMF for σ2

i,k,l, which is an expected
value of power of si,k,l. σ2

i,k,l is factorized as

σ2
i,k,l = wi,khi,l, (5)

where wi,k and hi,l are non-negative variables. wi,1:K repre-
sents a specific structure of spectrum that the source signal
has. hi,l means the activation of the spectrum in time l. The
generative model of si,k,l is rewritten as

si,k,l|wi,k, hi,l ∼ NC(si,k,l; 0, wi,khi,l), (6)

conditioned on wi,k and hi,l. Under the condition of Eq. (6),
the generative model of the single-channel observed signal is
equivalent to that proposed in [12].

In many cases, a sound signal consists of several spectra and
the source’s spectrum varies according to the source’s state.
Now we introduce latent variable zi,l ∈ {1, . . . , Q} to denote a
state of i-th source in time l. The state sequence zi,1, . . . , zi,L
follows a Markov chain:

zi,l|zi,l−1 ∼ Categorical(zi,l;ρzi,l−1
), (7)

where Categorical(x;y) = yx, ρq = (ρq,1, . . . , ρq,Q) denotes
the transition probability of state q to each state 1, . . . , Q,
and ρ = (ρq,q′)Q×Q denotes the transition matrix. Then, we
assume hi,l follows a gamma distribution which has different
parameters according to zi,l [6],

hi,l|zi,l ∼ Gamma(hi,l;αzi,lβzi,l), (8)

where α1:Q and β1:Q are the shape and scale parameters of
a gamma distribution, and Gamma(x;α, β) = xα−1e−x/β

Γ(α)βα .
As we want hi,l to take a small value when zi,l is the
“inactive” (i.e., silent) state, we set the hyperparameters of the
gamma distribution of that state so that it becomes a sparsity-
inducing distribution. As regards the gamma distributions of
the remaining states, we consider setting the hyperparameters
so that they become uniform distributions. The power spectrum
of the i-th source at time l is also assumed to be determined
according to zi,l. Thus, the generative model of si,k,l is
eventually written as

si,k,l|wi,k,1:Q, hi,l, zi,l
∼ NC(si,k,l; 0, wi,k,zi,lhi,l). (9)

With a similar motivation, we have previously proposed mod-
eling single-channel mixture signals using a factorial HMM,
where the basis spectrum of each latent source signal is
allowed to vary over time as a result of state transitions [13].

Unlike our previous model [13], the amplitudes of the basis
spectra also depend on the hidden states in the present model,
making it possible to perform audio event detection and source
separation simultaneously through parameter inference. Our
overall generative model is given by Eqs. (7), Eqs. (8) and

yk,l|a1:I,k,1:T , w1:I,k,1:Q, h1:I,l−T :l, z1:I,l−T :l

∼ NC(yk,l; 0,
∑
i,τ

Ci,k,τwi,k,zi,l−τ
hi,l−τ ), (10)

conditioned on a1:I,k,0:T ,w1:I,k,1:Q, h1:I,l−T :l and z1:I,l−T :l.

III. MODELING A SPATIAL CORRELATION MATRIX BASED
ON DOA

If we assume that a source is far from the microphones, the
frequency array response has a certain structure in the time-
frequency domain depending on Direction of Arrival (DOA).
Therefore, we can express a spatial correlation matrix by using
the DOAs [8][9][10]. Specifically, with M = 2 microphones,
the spatial correlation matrix for a source at direction θ such
that 0 ≤ θ ≤ π is defined as a function of ω depending on θ

J(θ, ω) =
[

1
eȷωB cos θ/C

]
[1 eȷωB cos θ/C ]

∗ (11)

where ȷ is the imaginary unit, B [m] is the distance between
the two microphones, and C [m/s] is the speed of sound. If the
DOA θi of source i is known, the spatial correlation matrix
for the direct wave should be equal to J(θi, ωk). However,
Ci,k,0 would not be equal to J(θi, ωk) because of reverberant
components in the frame of the STFT. Therefore, we introduce
a discrete set of O possible directions ϑ1, . . . , ϑO and weight
variables di,1 . . . di,O, then we express a spatial correlation
matrix using J(θi, ωk) and di,o as;

Ci,k,0 =
∑
o

di,oJ(ϑo, ωk). (12)

di,1 . . . di,O are non-negative and satisfy
∑

o di,o = 1 [10].
We expect that an relatively large value in di,1 . . . di,O would
indicate the DOA of the direct wave of the i-th source.

IV. ALGORITHM FOR PARAMETER ESTIMATION

A. Objective function

In this section, we describe a parameter estimation algorithm
for our generative model based on an auxiliary function
method. The random variables of interest in our model are
W = w1:I,1:K , H = h1:I,1:L,C = C1:I,1:K,1:T D = d1:I,1:O
and Z = z1:I,1:L . We denote the entire set of the above
parameters except Z as Θ. In the following, ρ, α and β are
constants that is determined experimentally.

The objective function L(Θ) is defined as L(Θ) =
log

∑
Z p(Θ,Z|Y ), where Y = y1:K,1:L is a set consisting

of the time-frequency components of observed multichannel
signals. Our goal is to obtain Θ̂ such that

Θ̂ = argmax
Θ

log
∑
Z

p(Θ,Z|Y ). (13)

By using the conditional distributions defined in Sec. II, we



can rewrite Θ̂ as

Θ̂ = argmax
Θ

(
log

∑
Z

p(Y |W ,H,C,D,Z)

+ log
∑
Z

p(H|Z) + log
∑
Z

p(Z)
)

= argmin
Θ

(∑
k,l

(−1

2
log

∑
Z

|X̂k,l|

− 1

2
log

∑
Z

expyk,l
HX̂

−1

k,lyk,l)

+ log
∑
Z

p(H|Z) + log
∑
Z

p(Z)
)
, (14)

where X̂k,l =
∑

i,τ Ci,k,τwi,k,zi,l−τ
hi,l−τ,zi,l−τ

.

B. Optimization algorithm based on an auxiliary function
method

The optimization problem of maximizing L(Θ) with respect
to Θ is difficult to solve analytically. However, we can invoke
an auxiliary function approach to derive an iterative algorithm
that searches for the estimate of Θ, as with [5]. To apply
an auxiliary function approach to the current optimization
problem, the first step is to construct an auxiliary function
L+(Θ,Λ) satisfying L(Θ) = maxΛ L+(Θ,Λ). We refer to Λ
as an auxiliary variable. It can then be shown that L(Θ) is
non-decreasing under the updates Θ ← argmaxΘ L+(Θ,Λ)
and Λ ← argmaxΛ L+(Θ,Λ). The proof of this shall be
omitted owing to space limitations. Thus, L+(Θ,Λ) should
be designed as a function that can be maximized analytically
with respect to Θ and Λ. Such a function can be constructed
as follows.

L(Θ)

≥L+(Θ,Λ)

=− 1

2

∑
k,l

(∑
i,q,o

λq,i,l

(
tr(yk,lyk,l

HRi,k,l,0,qJ
−1
i,k,oRi,k,l,0,q)

di,owi,k,qi,lhi,l

+ tr(U−1
k,lJ i,o)di,owi,k,qi,lhi,l

)
+

∑
i,q,τ ̸=0

λq,i,l

(
tr(yk,lyk,l

HRi,k,l,τ,qC
−1
i,k,τRi,k,l,τ,q)

wi,k,qi,l−τ
hi,l−τ

+ tr(U−1
k,lCi,k,τ )wi,k,qi,l−τ

hi,l−τ

)
+ log |Uk,l| −M

)
+
∑
i,l,q

λq,i,l

(
(αqi,l − 1) log hi,l − hi,l/βqi,l − αqi,l log βqi,l

)
+
∑
q

λq,i,l log p(Z), (15)

where Ri,k,l,τ,q , Uk,l and λq,i,l are auxiliary variables.
Ri,k,l,τ and Uk,l satisfy Hermitian positive definiteness and∑

i,τ Ri,k,l,τ,q = I . λq,i,l satisfies
∑

q λq,i,l = 1. We denote
the set of the auxiliary variables as Λ. tr(·) is the trace of a
matrix. The equality L(Θ) = L+(Θ,Λ) is satisfied when

Ri,k,l,τ,q = Ci,k,τwi,k,qi,l−τ
hi,l−τX̂

−1

k,l , (16)

Uk,l = X̂k,l, (17)
λq,i,l = p(qi,l|Θ). (18)

TABLE I
THE EXPERIMENTAL CONDITION.

Q O T α β

RT=380 ms 5 30 3 1 β1 = 10−1, β2:10 = 1010

TABLE II
THE AVERAGE INPUT SDRS/SIRS [dB] AND THESE OBTAINED BY OUR

PREVIOUS AND PRESENT METHODS.

RT=380ms SDR SIR
Proposed -4.17 5.90

Method in [7] -6.49 1.94
Input -40.33 -4.22

Therefore, we can indirectly maximize L by repeating the
following two steps.

1) Maximizing L+ with respect to R, U and λ.
2) Maximizing L+ with respect to W , H , C and D.
Step 1 consists in updating R and U using Eqs. (16) and

(17). With respect to λ, we can apply the Forward-Backward
algorithm. The update rule of λ is given by

λq,i,l = Fq,i,lBq,i,l/
∑
q

Fq,i,lBq,i,l, (19)

Fq,i,l = p(Θ|qi,l)
∑
qi,l−1

Fq,i,l−1ρqi,l−1,qi,l , (20)

Bq,i,l =
∑
qi,l+1

Bq,i,l+1p(Θ|qi,l+1)ρqi,l,qi,l+1
, (21)

where
p(Θ|qi,l)

∝ exp

(
−1

2

∑
k,l

(∑
i,o

(
tr(yk,lyk,l

HRi,k,l,0,qJ
−1
i,k,oRi,k,l,0,q)

di,owi,k,qi,lhi,l

+ tr(U−1
k,lJ i,k,o)di,owi,k,qi,lhi,l

)
+

∑
i,τ ̸=0

(
tr(yk,l+τyk,l+τ

HRi,k,l+τ,τ,qC
−1
i,k,τRi,k,l+τ,τ,q)

wi,k,qi,lhi,l

+ tr(U−1
k,l+τCi,k,τ )wi,k,qi,lhi,l

))
+

∑
i,l

(
(αqi,l − 1) log hi,l − hi,l/βqi,l − αqi,l log βqi,l

))
.

(22)
In step 2, we can obtain update rules of W ,H,C and D by
setting the partial derivative of L+ with respect to each of the
parameters at zero. Specifically, the partial derivatives of L+

with respect to D is given by

∂L+

∂di,o
=

∑
k,l,q

λq,i,l

(
tr(yk,lyk,l

HRi,k,l,0,qJ
−1
i,k,oRi,k,l,0,q)

d2i,owi,k,qi,lhi,l

− tr(U−1
k,lJ i,k,o)wi,k,qi,lhi,l

)
. (23)

According to the conditions for extremal values, update rules
are written as

di,o ←

√√√√√∑
k,l,q λq,i,l

tr(yk,lyk,l
HRi,k,l,0J

−1
i,k,oRi,k,l,0)

wi,k,qi,l
hi,l∑

k,l,q λq,i,ltr(U
−1
k,lJ i,k,o)wi,k,qi,lhi,l

. (24)

Note that to estimate W , H , C, D and λ = λ1:Q,1:I,1:L
means to solve the problems of source separation, source
activity detection, dereverberation and DOA estimation simul-
taneously.
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Fig. 1. An example of a spectrogram of the observed signal in the reverberant
condition (the reverberation time was 380 ms).

Fig. 2. Initial condition of d (top) and an example of the results of d with
the echoic signals (bottom).

V. RELATED WORKS

Our proposed model is equal to the model proposed in [7]
except Eqs. (12). The expression of Eqs. (12) was proposed
in [10] for the spatial matrix of multichannel NMF with the
mean-square-error criterion. We incorporate this model of the
spatial correlation matrix into our previous generative model
, which means that we model reverberation in the frame of
the STFT by using the DOAs. The estimation of D allows us
to estimate the DOAs, and we derive update rules of D for
optimizing our objective function. Moreover, we marginalize
Z in Sec. IV, while the algorithm proposed in [7] allows us
only to obtain the optimal sequence of Z by applying the
Viterbi algorithm.

VI. EXPERIMENTAL EVALUATION

We evaluated the performance of the present method in
terms of the abilities of source separation. We used 10 mixed
stereo signals (therefore the number of the microphones M
is 2) as the experimental data, each of which we obtained
by mixing three speech signals (speech of a male and two
females) from the ATR database [14] and was convolved with
the measured room impulse response from the RWCP database
[15] (in which the distance between the microphones was
11.48 cm and the reverberation time was 380 ms). Thus, the
three signals were artificially located 30◦, 90◦ and 130◦ from
the microphones respectively. Fig. 1 shows a spectrogram of
the observed signal (the reverberation time was 380 ms). The
sampling rate was 16 kHz. To compute the STFT components
of the observed signal, the STFT frame length was set at 64 ms
and a Hamming window was used with an overlap length of 48
ms. We set the parameters as Table I. We expected that q = 1 is
an inactive state and q = 2 : 5 are active states. D was initially
set as Fig. 2 (top). For τ = 1, . . . , T , The diagonal elements of
Ci,k,1:T were set to 10−1/

√
M , and the off-diagonal elements

were also set to zero initially. W was initially randomized.
H was set as 1 initially. ρq,q′ was set as 1/Q The parameter
estimation algorithm was run for 30 iterations. In order to
avoid an undesirable local optima, we first set T as 0 and
gradually increased T up to 3 with the iteration. We chose the
method proposed in [7] as a comparison. The separated signal
ŷi,k,l was obtained by Wiener filtering

ŷi,k,l =
∑
q

λq,i,lwi,k,qi,lhi,lCi,k,0X̂
−1

k,lyk,l. (25)

As evaluation measures, we used the signal-to-distortion ratio
(SDR) and the signal-to-interference ratio (SIR) [16]. The
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Fig. 3. A spectrogram of an anechoic source signal (top), that of a separated
and dereverbed signal with the proposed method (middle) and the result of
λ which corresponds to the estimated activity of the source (bottom). q = 1
corresponds to the inactive state.

SDR and SIR are expressed in decibels (dB), and a higher
SDR(/SIR) indicates superior quality.

Table II shows the average SDRs and SIRs obtained by
our previous and present methods. The average SDR and
SIR obtained with the present method were superior to these
obtained with conventional method. Fig. 2 (bottom) shows an
example of d obtained by the proposed method. We can see
that the DOA of the sources were estimated roughly by the
proposed method. Fig. 3 shows a spectrogram of an anechoic
source signal (top), that of a separated and dereverbed signal
with the proposed method (middle) and the result of λ which
corresponds to the estimated activity of the source (bottom).
We expected q = 1 is an inactive state by setting the
hyperparameters of the gamma distribution properly (Table I),
and the result shows the voice activity was roughly detected.

VII. CONCLUSION
In this paper we extend the MFHMM and propose a

unified approach for source separation, source activity detec-
tion, dereverberation and DOA estimation. Specifically, we
describe a spatial correlation matrix by using weight variable
and kernels and incorporate into the MFHMM. Through the
estimation of the parameters of the overall generative model,
we can simultaneously performed source separation, source
activity detection, dereverberation and DOA estimation. The
experiment showed that the proposed algorithm were superior
to our previous method in terms of the signal-to-distortion ratio
with echoic mixed signals.
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