A time-domain, level-dependent auditory filter: The gammachirp
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A frequency-modulation term has been added to the gammatone auditory filter to produce a filter
with an asymmetric amplitude spectrum. When the degree of asymmetry in this “gammachirp”
auditory filter is associated with stimulus level, the gammachirp is found to provide an excellent fit
to 12 sets of notched-noise masking data from three different studies. The gammachirp has a
well-defined impulse response, unlike the conventional roex auditory filter, and so it is an excellent
candidate for an asymmetric, level-dependent auditory filterbank in time-domain models of auditory
processing. ©1997 Acoustical Society of Amerid&0001-496607)02701-X]

PACS numbers: 43.66.Ba, 43.66.D&/J]

INTRODUCTION response which largely precludes its use in auditory filter-
) ) ] _banks. More physiological models of cochlear mechanics
In time-domain auditory models, the spectral anaIyS|s(f0r example, Giglee and Woodland, 199410 not provide
performed by the basilar membrane is often simulated by 3404 fits to human masking data; nor do they have suffi-
bank of gammatone auditory filtesee, for example, Patter- oy simple impulse responses for the traditional filterbank
sonet al, 1995. The impulse response of the gammatone isy chitecture.

gi(t) =at"" ! exp( —27b ERB(f.)t)cog27ft+ ) _ Irino _(1995, 1996 recently demonstrated that an ana-
Iytic relative of the gammatone function, referred to as the
(t>0), (1) ““gammachirp” function, is a theoretically optimum auditory

filter, in the sense that it leads to minimal uncertainty in a

wherea, b, n, fc, and ¢ are parameters. ERE{) is the joint time and scale representation of auditory signal analy-
equivalent rectangular bandwidth of the filter, and at moder’ b y sl Y

ate levels ERBI{,)=24.7+0.108, in Hz (Glasberg and sis. The derivation of the gammachirp function is based on

Moore, 1990. The filter gets its name from the fact that the _operator mthod(sGabor, 1946’ Cohen, 1991.’ .1993\/0'\/

f . ing the Mellin transform(Titchmarsh, 1948 it is summa-
envelope formed by the power function and the exponentia]. . . ; . o
. o : . . . rized in Appendix A. The gammachirp auditory filter is the
is a gamma distribution function, and the cosine carrier is 3.4l part of the analvtic aammachiro function E420). It
tone when it is in the auditory range. The amplitude spec; P yic g P ' )

X 4 . : has an asymmetric amplitude characteristic, and in the fol-
trum of the gammatone filter is essentially symmetric on

. aIowing we show that, when the asymmetry is associated with
linear frequency scale. . - . .
. . stimulus level, the gammachirp filter provides an excellent fit

The gammatone function was introduced by Johannesma . : .

o t0 human masking data. The gammachirp has a well-defined

(1972 to characterize impulse-response data gathered physi-

] . . . ; impulse response and, with only one parameter more than
ologically from primary auditory fibers in the cetee Carney the gammatone, it would appear to be an excellent candidate
and Yin, 1988, for an overview The gammatone has also 9 ’ PP

been used to characterize spectral analysis in humans f’ﬁr an asymmetric, level-dependent auditory filterbank.

moderate levels where the amplitude characteristic of the au-

ditory filter is nearly symmetric on a linear frequency scale

(see Patterson 1994, for an overvjew I. METHOD

The use of the gammatone filter is Iimited, however, byA. The power spectrum model with a gammachirp

the repeated demonstration that, below its center frequencyio,

the skirt of the auditory filter broadens substantially with

increasing stimulus level, and above its center frequency the ~ The impulse response of the gammachirp auditory filter

skirt sharpens a little with increasing lew&lutfi and Patter- S

son, 1984; Patterson and Moore, 1986; Moore and Glasberg, _

1987. The level dependence of the auditory filter has beer? ge(t)=at™* exp(—2mb ERB(f/)t)

modeled using the “roex” functior{Pattersoret al, 1982; xcog2nf t+cint+¢) (t>0). 2

Glasberg and Moore, 1990; Rosen and Baker, 1994t the

roex auditory filter does not have a well-defined impulseThe only difference between it and the impulse response of
the gammatongEq. (1)] is the termc In t; ¢ is an additional

dElectronic mail: irino@nttlab.brl.ntt.co.jp; WWW: http:// parameter, and In is.the natural logarithmic operator. The

www.brl.ntt.co.jp/peoplefirino/index.html filter has a monotonically frequency-modulated carriar

YElectronic mail: roy.patterson@mrc-apu.cam.ac.uk chirp) with an envelope that is a gamma distribution func-
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tion, and hence the name “gammachirg.'We usef, in- rized with a linear function. In our initial fit, then, we pro-
stead off. for the frequency parameter because the peakide two coefficients foc and one coefficient for each of
frequency of the amplitude spectrum varies withand to a b, andK.
lesser extenty) andn. The equivalent rectangular bandwidth The parametera andb affect bandwidth reciprocally;
of the filter varies with stimulus level, but for convenience, the bandwidth of the filter decreases, either whéncreases
we associate the parametemwith stimulus level so that the or whenb decreases, and vice versa. We are mainly con-
basic formula for filter width, ERBf,) =24.7+0.104,, is  cerned with the filter shape around the center frequency and
the same as in Ed1). in this case we can fix either or b and let the other vary to
The auditory filter shape is derived using the powermatch the auditory filter shape. Preliminary simulations ap-
spectrum model of maskindFletcher, 1940; Patterson, plied to several data sets and previous work with the gam-
1976. In the experiment, the listener is required to detect anatone suggested that we begin by fiximgt the value 4.
brief sinusoidal signal, referred to as a “probe” tone, in the The fitting procedure is broadly similar to the PolyFit
presence of a masker which is a noise with a spectral notcprocedure of Rosen and Bak@r994). Thresholds were cal-
in the frequency region of the probe tone. This “notchedculated for a range of filters with center frequencies around
noise” has a constant spectrum leW] in a band below the the probe frequency. The value of the filter giving the highest
tone betweerf, andf, and in a band above the tone signal-to-noise ratio was chosen as the threshold estifate
min max
betweenf, andf, . The level of the probe tone is varied (Patterson and Nimmo-Smith, 1980 We used the
to determine the power required to make it just audible-€venberg—Marquardt methdgPresset al, 1988 to mini-
(probe “threshold’), as a function of the width of the notch Miz€ the squared error between the data Bgd this is a
in the noise. The details of the experiment and the criteriorpt@ndard procedure for a nonlinear least-mean-square prob-
for threshold are described in Patters¢t976. If the Igm_. This fitting procedure is referred to as the “gammachirp
“shape” of the auditory filter(that is, its power spectrums it in the following.
represented by the weighting functioiy(f ), then the
power spectrum model is C. Data sets
We began by applying the gammachirp fit to the
notched-noise masking data of Rosen and B&ké84 be-
f, fy cause the results can be compared directly to their results
+10 |0910(f W )df+f W(f )df ) (3 with the roex filter and the PolyFit procedure. We will
Pl 4 specify the data source in the following by the initials of the
subject and the probe frequency, for example, “LM at 2000
Hz” for this data set which contains 78 tone-in-noise thresh-
olds. Rosen and Baker used total squared error if tdB
evaluate alternative fits. We will use rmgoot-mean-

Ps=K+Ng

min

whereP; is the power of the probe tone at threshold in dB,
andK is a constant which is related to the efficiency of the
detection mechanism following the auditory filter. Following

Pattersoret al. (1982, a parameter is introduced to limit ) L L
ssquare@d error in dB; it is a more intuitive measure and

the dynamic range of the filter. The weighting function i g . i .
associated with the power spectrum of the gammachirpmakes it easier to compare fits when the data sets have dif-
1Gc(f)[% as follows: ferent numbers of thresholds. _
The gammachirp was also fitted to subsets of the
W(f )=(1—1)-Wom(f )-|Gc(f )|?+r. (4)  notched-noise data reported in Lutfi and Patter¢b®84)
and Mooreet al. (1990. The data from Lutfi and Patterson
Here, W, (f ) is the “ELC” correction recommended by are those of HM, RL, RM, and WW at 1000 and 4000 Hz.
Glasberg and Mooré¢1990 to simulate the effects of the Each set contains 39 data points distributed over three dif-
outer and middle ears. The maximum absolute magnitude dérent noise levels, except for RM at 4000 Hz, where there
W(f ) is normalized to unitySee Appendix B for the ana- are 52 data points over four noise levels. The data of Moore
lytic form of the amplitude spectrum of the gammachirp. et al. (1990 are those of CP at 200, 400, and 800 Hz. Each
set contains 75 data points distributed over five noise levels.

II. RESULTS

We characterize the level dependence of the auditoryA" Rosen and Baker (1994)

filter shape in terms of the level dependence of the five pa- Rosen and Bakg(1994) fitted a wide range of roex filter
rameters of the gammachirp; b, ¢, K, andr. The auditory models to a set of masking data gathered with both probe-
filter becomes broader on the low side and sharper on thiéixed and masker-fixed conditions to maximize the range of
high side as stimulus level increas@doore and Glasberg, signal levels represented by the data. They discuss a subset
1987. Changes in the parametarsandb have little effect  of their fits for probe-dependent models with 24, 15, 10, 8, 7,
on the asymmetry of the amplitude spectrum, Enandr do 6, and 5 variable coefficients. The rms errors for the 78
not affect asymmetry since they are not filter parametersthresholds are 1.15, 1.16, 1.19, 1.19, 1.19, 1.20, and 1.42
Thus, the degree of asymmetry is primarily determined¢by dB.2 The rms errors for masker-dependent models are much
Rosen and Bakgrl994 showed, in an analogous fit with the greater than these values, and this is why they restricted their
roex auditory filter, that the level dependence can be summattention to probe-dependent models. The focus of their dis-

B. Parameters and fitting procedure
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masker-dependent models, but found, like Rosen and Baker,

of ' ' | that the rms errors were always much greater than those with
the probe-dependent models. Consequently, we only con-
-5r 1 sider probe-dependent models in what follows. The fit with-
-10 | out the parameter, i.e., the gammatone fit, is shown in the
. last row of Table I. The rms error is about 30% greater than
8-15 . that of the gammachirp fits, indicating that the gammatone
£ filter is not suitable as an asymmetric, level-dependent filter.
g—zo The rms errors in column 7 are the same for gam-
E 25 ] machirp models with between 4 and 7 variable coefficients.
This indicates that the coefficients converge even with rela-
-30 1 tively few coefficients. The rms errors with the gammachirp
are greater than those for roex models with six, seven, and
—35 1 eight variable coefficientscompare columns 7 and),8and
—a0bs . . . . smaller for models with five variable coefficients. The gam-
1000 1500 2000 2500 3000 machirp model with four variable coefficients, wheameis
Frequency (Hz)

fixed to 4, produces the same rms error as the model with
FIG. 1. The roex auditory filter shape as a function of probe |€8@60 five variable .coeff|C|ents, Where_ the eS“m?ted Value? Gﬁ
dB SPL in 10-dB stepswith six variable coefficientfadapted from Rosen ~ 3.89. Accordingly, the model with four variable coefficients
and Baker(1994]. seems sufficient to explain the masking data. Rosen and
Baker do not report results with a four-coefficient model.
cussion is the trade-off between number of free parametefEhe fixedh model also has advantages when fitting smaller
and goodness of fit, and they conclude that a rpax( data sets and when comparing coefficients obtained with dif-
model with six coefficients is the most appropriate. Specifi-ferent data sets.
cally, their fit employed one parameter for eachpgfandk, The coefficients for the four-coefficient model are listed
and two for each ofp, andr,. The auditory filter shapes in row “LM 2000” in Table IIl. The auditory filter shapes
produced by this fit are shown in Fig. 1 as a function ofproduced by this fit are shown in Fig. 2 as a function of
probe level. The lower side of the filter becomes considerprobe level. In the fitting process, the peak frequency of the
ably broader as level increases; the upper side is invariantamplitude spectrum varies with level, as described previ-
Column 7 of Table | shows rms error valu&B) ob-  ously; for clarity, however, the peak frequency is normalized
tained with the gammachirp fit using probe-dependent modto 2000 Hz in the figure by adjusting the valuefofin Eq.
els with various numbers of coefficients. The integers in col{2). Below its peak frequency, the skirt of the gammachirp
umns 2—6 show the number of coefficients used for theauditory filter broadens substantially with increasing stimu-
gammachirp parameter in that column. Following Rosen andus level; above its peak frequency, the skirt sharpens a little
Baker, we used the absolute threshold val@2.7 dB to  with increasing level. These shapes are quite similar to the
limit the minimum value of P;. We also investigated roex filter shapes in Fig. 1, although there are small differ-

TABLE I. Relationship between the number of filter coefficients and rms error. Columns 7 and 8 show rms
(root-mean-squargderrors in dB obtained with the gammachirp filter and the roex filter when fitting the
probe-dependent model with various numbers of coefficients to all 78 data points in Rosen andlB8ker

The rms errors in column 8 are calculated from the total squared errors in Rosen and1B&derThe integers

in the first column show the total number of variable coefficients for both the gammachirp and the roex. The
integers in other columns show the number of coefficients used for the gammachirp parameter in that column:
“1” indicates a filter parameter that is constant across signal level and “2” indicates a linear dependence of the
parameter on signal level. The symbol “-” indicates mnalue of —100 dB (practically zero in linear terms

“*" indicates ann value of 4; “—" indicates no model fitted at that value. The last row shows the results
without parametec, i.e., the gammatone fit.

Gammachirp

Number of roex

coefficients n b c K r rms error rms error
10 2 2 2 2 2 1.18 1.19
9 2 2 2 2 1 1.27 —
8 2 2 2 1 1 1.29 1.19
7 2 2 2 1 - 1.33 1.19
6 1 2 2 1 - 1.33 1.20
6 2 1 2 1 - 1.33 —
5 1 1 2 1 - 1.33 1.42
4 * 1 2 1 - 1.33 —
4 1 2 0 1 - 1.72 —
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B. Other data sets

Following the results in the previous subsection, we ap-
plied several probe-dependent models to the notched-noise
masking data of Lutfi and Patters¢i®84) and Mooreet al.
(1990. The models with four, five, and six variable coeffi-
cients were fitted to each set of data. As before, the model
with four variable coefficients proved most appropriate and
so we begin with it. Given their limited size, each set of
masking data was fitted with seven different sets of initial
values; the set that produced coefficients giving minimum
mean squared error is listed with the rms error in Table II. It
is clear that the value db converges between 1 and 2 and
thatc is always negatively correlated with probe lew&l, as

in the previous fits for LM at 2000 Hz. The filter shapes are
-4%00 1500 20'00 2500 3000 S|_m|Iar to the shapes in Fig. 2 in terms of. change |n-slope
Frequency (Hz) with level, except for four conditions: the filter shape is al-
most level independent for CP at 200 Hz and RM at 4000
FIG. 2. The gammachirp auditory filter shape as a function of probe levelHz; the upper slope changes as much as the lower slope does
(30-60 dB SPL in 10-dB stepwith four variable coefficients when applied for HM at 1000 and 4000 Hz. The last two rows in Table Il
Loortr?]z”'::j':g‘%o%%tzgf Rosen and Bakée94. The peak frequency is  ghqy the means and standard deviations of the parameter
values. Since the mean coefficients are close to those for LM,
a “typical” auditory filter set resembles those shown in Fig.
ences in the flatness around the peak frequency and in triewhen the peak frequencies are normalized to unity. Thus,
variability of the upper skirt. Unlike the roex, the upper skirt the gammachirp with four variable coefficients provides a
of the gammachirp has the “backward S” shape observed ifieasonable summary to the masking data in these data sets,
the dense threshold functions in Patter$b®76. The gam-  although the rms errors are larger than those for the data set
machirp filter naturally introduces the physical constraints ofof LM.
realistic filters into the estimation of the auditory filter shape. ~~ For completeness, we also performed the gammachirp fit
The derived filter shapes are also in agreement with thoswith five variable coefficient§l n, 1 b, 2 ¢’s, and 1K) and
reported in previous studiefLutfi and Patterson, 1984; six variable coefficient¢l b, 2 ¢’s, 1 K, and 2r’s). Only
Patterson and Moore, 1986; Moore and Glasberg, 1987 two of the models with five variable coefficients reduced the

It also appears that we do not need the paranmtetdrien  rms error more than 5%, reductions that are negligible when
fitting the data of LM; absolute threshold is sufficient limit to compared with the variance in the data sets. Since absolute
the dynamic range of the fitting process. This is another adthreshold values were not included in these fits, the model
vantage of using the gammachirp fit. with level-dependent was also applied to each sge., six

Filter gain (dB)

TABLE Il. Rms errors and coefficients obtained with the gammachirp auditory filter when fitting a probe-
dependent model with four variable coefficients. The first column specifies the data source by the initials of the
subject. CP represents data from Moeteal. (1990; HM, RL, RM, and WW represent data from Lutfi and
Pattersor(1984); LM represents data from Rosen and BakE394). The second column is probe frequency in

Hz. The third column shows rms error in dB. The remaining columns show the best coefficiehtcfand

K with n=4 andr=-100 (dB). The last two rows show the means and standard deviatiorts, fmrandK.

Subject Frequency rms error b c K
CP 200 4,72 1.19 —0.59 —0.009P 2.82
CP 400 2.92 1.43 2.64 —-0.08P —-1.15
CP 800 2.65 1.75 2.16 —0.07P, —4.35
HM 1000 4.04 1.17 8.43 —0.18(P -3.25
RL 1000 4.46 1.59 498 —0.146P, -11.70
RM 1000 2.93 1.21 5.27 —0.148 —-7.25
ww 1000 3.46 1.38 356 —0.098, —6.64
LM 2000 1.33 1.68 3.38 —0.107P4 —6.08
HM 4000 414 1.85 6.31 —0.153F —7.67
RL 4000 5.10 1.75 5.17 -0.18%P, —14.39
RM 4000 4.94 1.50 0.61 -0.01%P -3.63
ww 4000 2.75 1.79 418 —0.11Pg —5.87
mean — — 1.51 3.88 —0.109P, —-5.73
s.d. — — 0.24 2.46 0.057 451
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variable coefficiengs All of the derived values for the pa- frames with a Fourier transform. There is a trade-off between
rameter were negatively correlated with probe lev®]and  the resolution of time and the resolution of frequency in this
were smaller than-40 dB, even when the signal level was representation. The trade-off is known as the uncertainty
30 dB SPL. That is, the values are less than absolute thresprinciple, and Gabo(1946 showed that the function which
old, and so, absolute threshold is a more suitable limit to theatisfies minimal uncertainty in the joint time-frequency rep-
dynamic range when fitting these data. Moreover, the rmsesentation is a complex sinusoidal carrier with a Gaussian
error was reduced more than 10% in only three cases. Thusnvelope. This “Gabor function” is symmetric in time and
parameter does not seem necessary to explain the generalymmetric in frequency; moreover, the frequency bands all
form of the masking data, and the model with four variablehave the same width in this time-frequency representation.
coefficients seems sufficient to explain these masking data, The spectral analysis produced by auditory filtering dif-

as well as those of Rosen and Baker. fers significantly from that produced by the Fourier trans-
form: The impulse response of the auditory filter is asymmet-
IIl. SUMMARY ric in time with a fast rise and a slow dec&ge Boer and

de Jongh, 1975; Carney and Yin, 198te amplitude spec-

tor ?Itgra(rlr;ir:g(:?ggs fligg:;g gEgyvidtgshZCeogargzmmanﬂgL trum of the auditory filter is definitely not GaussiéiPatter-
y ' ; y son, 1978, and at high sound levels, it is asymmetric with

ric amplitude characteristic in frequency. Using the power :
spectrum model of masking, and the assumption that ththe lower skirt shallower than the upper ski@lasberg and

. : : . t Mroore 1990. The gammatone functidrEq. (1)] provides a
asymmetry is associated with stimulus level, the ampIItUdemuch better fit to auditory filtering data than the Gabor func-

spectrum of the gammachirp was fitted to notched—nmseaon. It is clear, however, that to the extent that the gamma-

masking data from 12 data sets reported in 3 different stud- : S : -
. . . ..~ "tone differs from the Gabor function, it does not satisfy mini-
ies. A probe-dependent model with four variable coefficients R o .

mum uncertainty in a joint time-frequency representation of

is shown to provide an excellent fit to the masking data. The ound. Moreover, the bandwidth of the auditory filter in-

resultant gammachirp filter shape is similar to that obtainec? . o :
with a six-coefficient roex filter by Rosen and Bak@g94). creases with center frequency; in the region above about 500

. ! : . Hz, it is essentially a “constant-Q system,” that is, band-
The gammachirp has a well-defined impulse response un“k\?vidth is proportional to center frequené@reenwood, 1990;
the roex auditory filter and, thus, it is an excellent candidateGlasberg and Moore, 1990 ' '

for an asymmetric, level-dependent auditory filterbank in It is possible that the auditory system is non-optimal

time-domain models of auditory processihg. because it has to satisfy some mechanical or physiological

constraint that is not compatible with minimal uncertainty,
ACKNOWLEDGMENTS and which restricts the bandwidth to be a proportion of the
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Richard J. Baker of University College, London for provid- ditory filtering, to explore the possibility that the auditory
ing their notched-noise masking data, as well as fruitful dis-system is optimal, but optimal for a different representation
cussions. The first author wishes to thank Takesi Okadomef sound. It is this hypothesis that led to the “scale trans-
of NTT BRL for the suggestion to study optimality of the form” and the derivation of the gammachirp function.
auditory filter.

B. Scale analysis

APPENDIX A: THE DERIVATION OF THE Cohen (1991, 1993 has suggested that “scale” is a
GAMMACHIRP FUNCTION physical attribute of a signal just like time and frequency,
The gammachirp function arose from consideration ofand that a time-scale representation is more appropriate than
the contrast between the traditional representation of soundfourier analysis for “scaled” signals. A “scaled” signal is
the spectrogram, and the representation produced by auditosymply one that is compressed or extended in time relative to
filterbanks designed to mimic the spectral processing of théhe original, as when a tape recording is replayed at a rate
cochlea. The contrast is set out in Sec. A of this Appendix. Ifaster or slower than that at which it was recorded. Cohen
has led to the hypothesis that the time-frequency representé199]) introduced a “scale transform” in the form of an
tion of sound observed at the output of the cochlea is arthogonal Mellin transforniTitchmarsh, 1948to produce
intervening representation produced by the auditory systerihe scale representation. It is described in Sec. C. The Mellin
to support a subsequent “scale transform,” and that théransform converts a scaled signal i an invariant abso-
function that minimizes uncertainty in the time-scale repredute distribution in the scale representation, ghyla value
sentation is the gammachirp. The scale transform and thepecifying the scale value of the signal. When the speed of a
gammachirp function are the subjects of Secs. B and C, rgecording fluctuates on playback, it has a pronounced effect
spectively. on the pitch we hear, but the source of the sound is not
perceived to change. This suggests that the “scale” value
and the “invariant distribution” of the Mellin transform may
The spectrogram is a typical example of a joint time-be analogous to pitch and timbre in the auditory system.
frequency representation of sound. It is produced by converffhus, the time-scale representation of sound could have dis-
ing successive segments of the sound wave into spectréihct advantages when analyzing systems where a vibrating

A. The spectrogram and auditory filtering
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source with variable rate excites a complex resonatorwhere the arrow=) indicates “is transformed into” and
“Source-filter” models of this sort are commonly used to is a real dilation constant. That is, the distributi8fp) is
explain the production of sound by the vocal trgEant, just multiplied with a constard™P when the functiors(t) is
1970 and musical instrument&letcher and Rossing, 1991 scaled in time. Ifp is denoted byp,+jp;,

~ The scale transform can be applied to a sound wave aP=a (PP =g Pia iPi=a P exp(— In p)),
directly. It is clear, however, that in the auditory system, the (A3)
scale transform would have to be applied after auditory fil-
tering. The wavelet transform is similar to the auditory fil- Wherej = =1, and exp and In are the exponential and natu-
terbank inasmuch as it is a “constant-Q” system; both theral logarithmic operators. Singa™PS(p)| =|a| -| S(p)/,
envelope and the carrier of the impulse response scale witfie absolute distributiofS(p)| is not affected by a scaling of
center frequency in these systems. The Mellin transform corthe signal, except for the constant that specifies the scale of
verts the individual wavelets into an invariant distribution in the current signal; nor is it affected when the distribution is
the scale representation. Thus, with a wavelet filterbankjormalized.
when a sound is scaled, its components shift to wavelet fil-
ters that have been scaled by the same amount. So, the out- ,
puts of the scaled filters are exactly the same as the scaldy Minimal uncertainty and operator methods
versions of the outputs of the original filters. Both the scaled  With the Mellin transform, questions concerning mini-
and unscaled filter outputs are transformed into the sammnal uncertainty in a joint representation are assessed with
distribution in the scale representation. Thus, the wavelebperator methods. They were introduced into signal process-
filterbank is “transparent” to the scaling of sounds, and ining from quantum mechanics by Gat{d®46 because of the
this sense, the wavelet transform is optimal as a preprocesssimilarity in mathematical formalism. The following is a tu-
for the Mellin transform. This implies that the auditory fil- torial on operator methods based on the derivation of the
terbank would be a near optimum preprocessor for the MelGabor function; it is adapted from Coh¢h991, 1993.
lin transform. Time and frequency operators are defined7ast and

The optimal relationship between the Mellin transform 77'=—j(d/dt) in the time domain. When the operataf”is

and the wavelet transform does not uniquely determine thepplied to the functiore !, the result is
form of the wavelet that produces minimal uncertainty in a d
joint time-scale representation; Clearly, the Gabor function %/'Aejwt:( —j —)Aejthw Ad ot (A4)
does not; After Cohen(1991, 1993 adapted Klauder's dt
(1980 results on affine variables in quantum mechanics torhys, for a complex exponential, the operaist introduces
produce the scale representation for time domain functionshe frequency ternw. This is the essence of operator meth-
he showed that the optimal function for minimal uncertaintygds. The commutator between these operators is again an
in a time-scale representation has a gamma envelope andogerator; namely,
monotonically frequency-modulated carrier. In Cohen’s case,
the instantaneous frequengy of the carrier §tarts aF infinity [T =T — 7//’17=t( — i) —(—j E)tzj.
and converges on zero as time proceeds. This solution is not dt dt
suitable for relatively narrow-band applications like auditory (A5)
filtering. This led Irino(1995, 1996 to introduce a frequency |t is easy to prove by applying this operator to the function
shift term that makes it possible to model the bandwidth/ae !, Since the commutator is not zero, time and frequency
center-frequency function of the auditory system, and prodo not commute. Thus, time and frequency cannot be mea-

duce a narrow-band filter centered on a specific frequencysured independently and there is uncertainty between them,
This, in turn, led to the derivation of the gammachirp func-and in this case, it is

tion through the optimality constraint. This, then, is the logic 10 = N — 15\ 1

for the time-scale representation of sound and the gam- At-do=3[([7. 7 DI=ADI=2 (A6)

machirp function. where(A.), ||, and{.) denote the standard deviation, the ab-
solute value, and the average, respectively. Functions which

satisfy minimal uncertainty are solutions to the equation
C. Mathematical derivation

(7= 7"))s(t)=N(T—(T))s(1), (A7)

a. The Mellin transform where
The Mellin transform(Titchmarsh, 194Bof a signal, N=([7 7 N2AAT)?*=]I2(At)?, (A8)
s(t) (t>0), is defined as Using 7=t, 77'=—j d/dt, (7)=(t), and (7)=(w), Eq.

x (A7) is expanded as follows:
S(p)= f s(htP~t dt, (A1) q

0 .

| _ (—J a—<w>)s<t>=x<t—<t>>s<t);
wherep is a complex argument. One of the important prop-
erties is

~d L
if s(t)=S(p), then s(at)=a PS(p), (A2) J gt SO+ ({0) =M B)s() =0;
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d 1 . (t) where
at V" a2 ts(t)+( ~He)= 2(At)2)s(t)_0' N=([.7 7 JI2(A7)2) = [{t)[2(AD)2. (A18)
.. . (A9 Equation(A15) expands to

The nontrivial solution is d

_ 1 (t) . tl =] d_)s(t)_(w0+jal)ts(t)+(_01+jaz)S(t):O,
sW=a exp( ~ 207U 2an? ””“’”) t (A19)

, 1 _ where a;=(1)/2(At)?, a,=u—3—1Im{c,) +(t)%/2(At)?, and
=a EXD{ T 4(A1)? (t—(t))z]exm(w>t), (A10) clzRe(cla>—co, Re anc? Im inzdicate the real and imaginary

L ) parts. The solution is
wherea anda’ are constants. This is the “Gabor function,”

and the example shows how it was derived using the conS(t)=at*2"/°t exp(— a;t+]jwot)
straint that the required function satisfy minimal uncertainty

) S . =at*2 exp(—ajt)expjwet+jcq In't), (A20)

in a joint time-frequency representation. . .
where a is a constant. The envelopeg? exp(—a;t)is a

c¢. The Mellin operator gamma distribution functiom(t). The instantaneous fre-

guency iswgtc4/t; that is, a fractional function of time.
When played as a sound, the carrier would be a chirp, and
hence the name “gammachirp” function. When=0, Eq.
C=[TW+W =TV ~3. (A11)  (A20) becomes a gammatone function. Thus, the gammatone

Previously it had been known as the operator representing Jant!on is a first order approximation to the gammachirp
affine variable in quantum mechani@élauder, 1980, The  runction.

corresponding transform, that is, “the scale transfor(@b-  APPENDIX B: THE AMPLITUDE SPECTRUM OF THE

Cohen(1991, 1993 introduced the concept of a scale
operator into signal processing in the form:

hen, 1993, is GAMMACHIRP FUNCTION
1 " The Fourier spectrum of the gammachirp function can
D(C)= — f f(t)tie-12 g, (A12) be derived analytically. For convenience, we consider a sim-
V2 Jo plified version of the complex form of the gammachirp filter

The correspondence between the scale transform and tHé Ea. (2.

Mellin transform is revealed by setting=—jc+3 in Eq. g =at" L exp —b't)expjo,t+jc Int) (t>0)

(A1). Thus, Cohen’s scale transform is the Mellin transform , )

with a specific argument. In E4A12), the argument is re- =at" e exp(—b't+jeot) (t>0), (BY)
stricted in range; we can, however, extend it to cover theyhereb’ =2xb ERB(f,), ,=27f,, and the phase term

entire complex plane by the introduction of two real con-js ijgnored. The Laplace transform of E@1) is
stantsc, and u as follows:

_ . I'(n+jc)

p=—j(C—Co)+(u+3). (A13)  Gc(s)=a 5= (—b +jaEe
The corresponding Mellin operator is T(n+jc)

Co=T W +{co+j(u—3}. (A14) =a [S—(—b' + )| 1Cel? (M0
Since we are concerned with signal processing by an audi- r ;

: ; : = (n+jc)
tory filterbank, we introduce a “frequency-shift” terny, =a _ — . 5,
[s=(=b"+jw)|"e " [s=(=b"+]w)| "

into the operator to specify the individual filters. The form of
the operator becomes
Ca= TV "= wo) +{Co+ (=3} (A15)

The frequency-shift term can be removed later following |Ge(s)|= |a1“,(n4.rjc)|n —.
consideration of the fluctuation of components at the output s=(=b"+]jw)["e
of the auditory filter(Irino, 1996. The commutator between Substitutings=jw=j2f into Eq.(B3) to derive the ampli-

(B2)
where §=arg{s— (—b’ +jw,)}. Thus, the absolute value is

(B3)

time and this operator is tude of the Fourier spectrum of the gammachirp function,
L7 Ca=17 Cnl=17 2 ]1=]7. (A16) |al'(n+jc)| oo
. . |C;C(f )|: r . n -ery, (84)
The operators in EqgA14) and (A15) are not Hermitian |b"+j2m(f—f,)]

except whenu=0; nevertheless, 4,—(% ) is Hermitian where 9=arg(b’ +j2m(f—f,)}.
and, thus, the eigenvalue is real. The function that satisfies '

minimal uncertainty betv_veen time _and the qu_antlty rePreageyeral auditory filters with gamma distribution envelopes and monotoni-
sented by the operator in EGA14) is the solution to the cally frequency-modulatedFM) carriers have appeared recently. First,

equation Lyon (1996 has reported an “all-pole gammatone fil{&PGPF” based on
B - reduction of zeros from the Laplace transform of the gammatone filter in
(Za—(Z2)s(t)=N(.7—(t))s(t), (A17) the s plane. In this case, the intent was to simulate basilar partition motion
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