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Abstract
This article presents theoretical, algorithmic and experimental results about nonnegative ma-
trix factorization (NMF) with the Itakura-Saito (IS) divergence. We describe how IS-NMF
is underlain by a well-defined statistical model of superimposed Gaussian components and
is equivalent to maximum likelihood estimation of variance parameters. This setting can ac-
commodate regularization constraints on the factors through Bayesian priors. In particular,
inverse-Gamma and Gamma Markov chain priors are considered in this work. Estimation
can be carried out using a space-alternating generalized expectation-maximization (SAGE)
algorithm; this leads to a novel type of NMF algorithm, whose convergence to a stationary
point of the IS cost function is guaranteed.
We also discuss the links between the IS divergence and other cost functions used in NMF,
in particular the Euclidean distance and the generalized Kullback-Leibler (KL) divergence.
As such, we describe how IS-NMF can also be performed using a gradient multiplicative al-
gorithm (a standard algorithm structure in NMF) whose convergence is observed in practice,
though not proven.
Finally, we report a furnished experimental comparative study of Euclidean-NMF, KL-
NMF and IS-NMF algorithms applied to the power spectrogram of a short piano sequence
recorded in real conditions, with various initializations and model orders. Then we show
how IS-NMF can successfully be employed for denoising and upmix (mono to stereo
conversion) of an original piece of early jazz music. These experiments indicate that
IS-NMF correctly captures the semantics of audio and is better suited to the representation
of music signals than NMF with the usual Euclidean and KL costs.

Keywords: Nonnegative matrix factorization (NMF), unsupervised machine learning,
Bayesian linear regression, space-alternating generalized expectation-maximization (SAGE),
music transcription, single-channel source separation, audio restoration, computational au-
ditory scene analysis (CASA).

Résumé
Cet article présente des résultats théoriques, algorithmiques et expérimentaux concernant
la factorisation en matrices à coefficients positifs (NMF) avec la divergence d’Itakura-
Saito (IS). Nous décrivons comment la IS-NMF peut être interprétée comme un problème
d’estimation au sens du maximum de vraisemblance de paramètres de variance dans un
modèle de composantes gaussiennes. Cette interprétation statistique permet notamment
de prendre en compte des contraintes de régularisation des facteurs, dans un formalisme
bayésien. L’estimation des paramètres peut être conduite en utilisant un algorithme de type
SAGE, donnant lieu à un nouveau type d’algorithme NMF dont la convergence vers un point
stationnaire du critère est garantie.
Dans cet article, nous évoquons également les liens entre la divergence IS et d’autres fonctions
coûts utilisées en NMF, notamment la distance euclidienne et la divergence de Kullback-
Leibler (KL) généralisée. Ainsi, nous montrons comment la IS-NMF peut également être
réalisée par le biais d’un algorithme multiplicatif (une méthode courante en NMF), dont la
convergence n’est cependant pas montrée, bien que constatée en pratique.
Finalement, nous rapportons les résultats d’une étude expérimentale dans laquelle nous
avons comparé les factorisations obtenues de plusieurs algorithmes NMF, avec les coûts
euclidiens, KL et IS, appliqués au spectrogramme d’un court extrait de piano. Puis, nous
décrivons comment la IS-NMF peut être utilisée dans contexte de restauration audio, pour
le débruitage et le remixage mono vers stéréo d’un enregistrement de jazz ancien. Les
résultats indiquent que IS-NMF extrait correctement la sémantique des données, et est
mieux adaptée à la représentation du signal musical que la NMF avec les coûts euclidiens
ou KL.

Mots-clés: Factorisation en matrices à coefficients positifs, apprentissage statistique
non-supervisé, régression linéaire bayésienne, algorithme SAGE, transcription musicale,
séparation de sources avec un seul capteur, restauration audio, analyse de scènes auditives.
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1 Introduction

Nonnegative matrix factorization (NMF) is a now popular dimension reduction technique, em-
ployed for non-subtractive, part-based representation of nonnegative data. Given a data matrix V
of dimensions F ×N with nonnegative entries, NMF is the problem of finding a factorization

V ≈WH (1)

where W and H are nonnegative matrices of dimensions F × K and K × N , respectively. K is
usually chosen such that F K +KN << F N , hence reducing the data dimension. Note that the
factorization is in general only approximate, so that the terms “approximate nonnegative matrix
factorization” or “nonnegative matrix approximation” also appear in the literature. NMF has been
used for various problems in diverse fields. To cite a few, let us mention the problems of learning
parts of faces and semantic features of text (Lee and Seung, 1999), polyphonic music transcription
(Smaragdis and Brown, 2003), object characterization by reflectance spectra analysis (Berry et al.,
2007), portfolio diversification (Drakakis et al., 2007), as well as Scotch whiskies clustering (Young
et al., 2006).

In the literature, the factorization (1) is usually sought after through the minimization problem

min
W,H≥0

D(V|WH) (2)

where D(V|WH) is a cost function defined by

D(V|WH) =
F∑
f=1

N∑
n=1

d([V]fn|[WH]fn) (3)

and where d(x|y) is a scalar cost function. Popular choices are the Euclidean distance, that we
here define as

dEUC(x|y) =
1
2

(x− y)2 (4)

and the (generalized) Kullback-Leibler (KL) divergence, also referred to as I-divergence, defined
by

dKL(x|y) = x log
x

y
− x+ y . (5)

Both cost functions are positive, and take value zero if and only if x = y.
Lee and Seung (2001) proposed gradient descent algorithms to solve the minimization prob-

lem (2) under the latter two cost functions. Using a suitable step size, the gradient descent
update rules are turned into multiplicative rules, under which the cost function is shown to be
non-increasing. The simplicity of the update rules has undoubtedly contributed to the popularity
of NMF, and most of the above-mentioned applications are based on Lee and Seung’s algorithm
for minimization of either the Euclidean distance or the KL divergence.

Nevertheless, some papers have considered NMF under other cost functions. As such, Kompass
(2007) considers a parametric generalized divergence which interpolates between the Euclidean dis-
tance and the KL divergence, with a single parameter. As a matter of fact, the divergence coincides
up to a factor with the β-divergence introduced by Eguchi and Kano (2001). The β-divergence is
also considered by Cichocki et al. (2006), as is the family of Csiszár divergences (to which Amari’s
α-divergence belongs). Finally, Dhillon and Sra (2005) describe algorithms for the wide family
of Bregman divergences. Again these papers come up with multiplicative gradient descent NMF
algorithms, the convergence of which being proved only in certain cases, as discussed later.

In this paper we are interested in NMF with the Itakura-Saito (IS) divergence, whose expression
is given by

dIS(x|y) =
x

y
− log

x

y
− 1 . (6)

This divergence was obtained by Itakura and Saito (1968) from the maximum likelihood (ML)
estimation of short-time speech spectra under autoregressive modeling. It was presented as “a
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measure of the goodness of fit between two spectra” and became popular in the speech commu-
nity during the seventies. It was in particular praised for the good perceptual properties of the
reconstructed signals it led to (Gray et al., 1980).

As we shall see, this divergence has other interesting properties. It is in particular scale-
invariant, meaning that low energy components of V bear the same relative importance as high
energy ones. This is relevant to situations in which the coefficients of V have a large dynamic
range, such as in audio short-term spectra. The IS divergence also leads to desirable statistical
interpretations of the NMF problem. Indeed, we describe how NMF can in this case be recast as
maximum likelihood (ML) estimation of W and H in superimposed signals under simple Gaussian
assumptions. Equivalently, we describe how IS-NMF can be interpreted as ML of W and H in
multiplicative Gamma noise.

The IS divergence belongs to the class of Bregman divergences and is a limit case of the β-
divergence. Thus, the gradient descent multiplicative rules given in (Dhillon and Sra, 2005) and
(Cichocki et al., 2006) – which coincide in the IS case – can be applied. If convergence of this
algorithm is observed in practice, its proof is still an open problem. The statistical framework
going along with IS-NMF allows to derive a new type of minimization method, derived from space-
alternating expectation-maximization (SAGE), a variant of the standard expectation-maximization
(EM) algorithm. This method leads to new update rules, which do not possess a multiplicative
structure. The EM setting guarantees convergence of this algorithm to a stationary point of the
cost function. Moreover, the statistical framework opens doors to Bayesian approaches for NMF,
allowing elaborate priors on W and H, for which maximum a posteriori (MAP) estimation can
again be performed using SAGE. Examples of such priors, yielding regularized estimates of W and
H, are presented in this work.

IS-NMF underlies previous works in the area of automatic music transcription and single-
channel audio source separation, but never explicitly so. In particular our work builds on (Benaroya
et al., 2003, 2006; Abdallah and Plumbley, 2004; Plumbley et al., 2006) and the connections be-
tween IS-NMF and these papers will be discussed.

This article is organized as follows. Section 2 addresses general properties of IS-NMF. The
relation between the IS divergence and other cost functions used in NMF is discussed in Section 2.1,
Section 2.2 addresses scale invariance and Section 2.3 describes the statistical interpretations of IS-
NMF. Section 3 presents two IS-NMF algorithms; an existing multiplicative algorithm is described
in Section 3.1 while Section 3.2 introduces a new algorithm derived from SAGE. Section 4 reports
an experimental comparative study of Euclidean-NMF, KL-NMF or IS-NMF algorithms applied
to the power spectrogram of a short piano sequence recorded in real conditions, with various
initializations and model orders. These experiments show that IS-NMF correctly captures the
semantics of the signal and is better suited to the representation of audio than NMF with the
usual Euclidean and KL costs. Section 5 presents how IS-NMF can accommodate regularization
constraints on W and H within a Bayesian framework and how SAGE can be adapted to MAP
estimation. In particular, we give update rules for IS-NMF with Gamma and inverse-Gamma
Markov chain priors on the rows of H. In Section 6, we present audio restoration results of an
original early recording of jazz music; we show how the proposed regularized IS-NMF algorithms
can successfully be employed for denoising and upmix (mono to stereo conversion) of the original
data. Finally, conclusions and perspectives of this work are given in Section 7.

2 Properties of NMF with the Itakura-Saito divergence

In this section we address the links between the IS divergence and other cost functions used for
NMF, then we discuss its scale invariance property and finally describe the statistical interpreta-
tions of IS-NMF.
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2.1 Relation to other divergences used in NMF

β-divergence The IS divergence is a limit case of the β-divergence introduced by Eguchi and
Kano (2001), that we here define as

dβ(x|y) def=


1

β (β−1)

(
xβ + (β − 1) yβ − β x yβ−1

)
β ∈ R\{0, 1}

x (log x− log y) + (y − x) β = 1
x
y − log x

y − 1 β = 0
(7)

Eguchi and Kano (2001) assume β > 1, but the definition domain can very well be extended to
β ∈ R, as we do. The β-divergence is easily shown to be continuous in β by using the identity
limα→0 x

α/α = log x. It coincides up to a factor 1/β with the generalized divergence of Kompass
(2007) which, in the context of NMF, was constructed as to interpolate between the KL divergence
(β = 1) and the Euclidean distance (β = 2). Note that the derivative of dβ(x|y) with respect to
(wrt) y is also continuous in β, and simply writes

∇y dβ(x|y) = yβ−2 (y − x). (8)

The derivative shows that dβ(x|y), as a function of y, has a single minimum in y = x and that it
increases with |y−x|, justifying its relevance as a measure of fit. Figure 1 represents the Euclidean,
KL and IS divergences for x = 1.

Using equation (8), the gradients of criterion Dβ(V|WH) wrt W and H simply writes

∇HDβ(V|WH) = WT
(
(WH).β−2. (WH−V)

)
(9)

∇WDβ(V|WH) =
(
(WH).β−2. (WH−V)

)
HT (10)

where . denotes Hadamard entrywise product and A.n denotes the matrix with entries [A]nij . The
multiplicative gradient descent approach taken in (Lee and Seung, 2001; Cichocki et al., 2006;
Kompass, 2007) is equivalent to updating each parameter by multiplying its value at previous
iteration by the ratio of the negative and positive parts of the derivative of the criterion wrt
this parameter, namely θ ← θ.[∇f(θ)]−/[∇f(θ)]+, where ∇f(θ) = [∇f(θ)]+ − [∇f(θ)]− and the
summands are both nonnegative. This ensures nonnegativity of the parameter updates, provided
initialization with a nonnegative value. A fixed point θ? of the algorithm implies either ∇f(θ?) = 0
or θ? =0. This leads to the following updates,

H ← H.
WT ((WH).β−2.V)

WT (WH).β−1
(11)

W ← W.
((WH).β−2.V) HT

(WH).β−1 HT
(12)

where A
B denotes the matrix A.B.−1. Lee and Seung (1999) showed that Dβ(V|W H) is non-

increasing under the latter updates for β = 2 (Euclidean distance) and β = 1 (KL divergence).
Kompass (2007) generalizes the proof to the case 1 ≤ β ≤ 2. In practice, we observe that the
criterion is still nonincreasing under updates (11) and (12) for β < 1 and β > 2 (and in particular
for β = 0, corresponding to the IS divergence), but no proof is available. Indeed, the proof given by
Kompass makes use of the convexity of dβ(x|y) as a function of y, which is only true for 1 ≤ β ≤ 2.
In the rest of the paper, the term “EUC-NMF” will be used as a shorthand for “Euclidean-NMF”.

Bregman divergences The IS divergence belongs to the class of Bregman divergences, defined
as dφ(x|y) = φ(x) − φ(y) − ∇φ(y) (x − y), where φ is a strictly convex function of R that has a
continuous derivative ∇φ. The IS divergence is obtained with φ(y) = − log(y). Using the same
approach as in previous paragraph, Dhillon and Sra (2005) derive the following update rules for
minimization of Dφ(V|WH),

H ← H.
WT (∇2φ(WH).V)

WT (∇2φ(WH).WH)
(13)

W ← W.
(∇2φ(WH).V) HT

(∇2φ(WH).WH) HT
(14)
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Again, the authors observed in practice continual descent of Dφ(V|WH) under these rules, but
were not able to give a proof of convergence. Note that equations (11) and (12) coincide with
equations (13) and (14) for the IS divergence.

2.2 Scale invariance

The following property holds for any value of β,

dβ(γ x|γ y) = γβ dβ(x|y). (15)

It implies that the IS divergence is scale-invariant (i.e, dIS(γ x|γ y) = dIS(x|y)), and is the only
one of the β-divergence family to possess this property. The scale invariance means that same
relative weight is given to small and large coefficients of V in cost function (3), in the sense that
a bad fit of the factorization for a low-power coefficient [V]fn will cost as much as a bad fit for
higher power coefficient [V]f ′n′ . On the opposite, factorizations obtained with β > 0 (such as with
the Euclidean distance or the KL divergence) will rely more heavily on the largest coefficients and
less precision is to be expected in the estimation of the low-power components.

The scale invariance of the IS divergence is relevant to decomposition of audio spectra, which
typically exhibit exponential power decrease along frequency f and also usually comprise low-power
transient components such as note attacks together with higher power components such as tonal
parts of sustained notes. The results of the decomposition of a piano spectrogram presented in
Section 4 confirm these expectations by showing that IS-NMF extracts components corresponding
to very low residual noise and hammer hits on the strings with great accuracy. These components
are either ignored or severely degraded when using Euclidean or KL divergences.

2.3 Statistical interpretations

We now turn to statistical interpretations of IS-NMF which will eventually lead to a new EM-based
algorithm, described in Section 3.

2.3.1 Notations

The entries of matrices V, W and H are denoted vfn, wfk and hkn respectively. Lower case
bold letters will in general denote columns, such that W = [w1, . . . ,wK ], while lower case plain
letters with a single index denote rows, such that H = [hT1 , . . . , h

T
K ]T . We also define the matrix

V̂ = WH, whose entries are denoted v̂fn. Finally, we introduce the matrices W−k and H−k which
respectively denote matrix W of which column k has been removed and matrice H of which row
k has been removed. Where these conventions clash, the intended meaning should be clear from
the context.

2.3.2 Sum of Gaussians

Theorem 1 (IS-NMF as ML estimation in sum of Gaussians). Consider the generative model defined
by, ∀n = 1, . . . , N

xn =
K∑
k=1

ck,n (16)

where xn and ck,n belong to CF×1 and

ck,n ∼ Nc(0, hkn diag (wk)), (17)

where Nc(µ,Σ) denotes the proper multivariate complex Gaussian distribution and where the
components c1,n, . . . , cK,n are mutually independent and individually independently distributed.
Define V as the matrix with entries vfn = |xfn|2. Then, maximum likelihood estimation of W
and H from X = [x1, . . . ,xN ] is equivalent to NMF of V into V ≈WH, where the Itakura-Saito
divergence is used.
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Proof. Under assumptions of Theorem 1 and using the expression ofNc(µ,Σ) given in Appendix A,

the minus log likelihood function CML,1(W,H) def= − log p(X|W,H) simply factorizes as

CML,1(W,H) = −
N∑
n=1

F∑
f=1

logNc

(
xfn|0,

∑
k

wfk hkn

)
(18)

= NF log π +
N∑
n=1

F∑
f=1

log

(∑
k

wfk hkn

)
+

|xfn|2

(
∑
k wfk hkn)

(19)

c=
N∑
n=1

F∑
f=1

dIS

(
|xfn|2 |

∑
k

wfk hkn

)
(20)

where c= denotes equality up to constant terms. The minimization of CML,1(W,H) wrt W and
H thus amounts to the NMF V ≈WH with the IS divergence. Note that Theorem 1 holds also
for real-valued Gaussian components. In that case CML,1(W,H) equals DIS(V|WH) up to a
constant and a factor 1/2.

The generative model (16) was introduced by Benaroya et al. (2003, 2006) for single-channel
audio source separation. In that context, xn = [x1n, . . . , xfn, . . . , xFn]T is the Short-Time Fourier
Transform (STFT) of an audio signal x, where n = 1, . . . , N is a frame index and f = 1, . . . , F is a
frequency index. The signal x is assumed to be the sum of two sources x = s1 + s2 and the STFTs
of the sources are modeled as s1,n =

∑K1
k=1 ck,n and s2,n =

∑K1+K2
k=K1+1 ck,n, with K1 +K2 = K. This

means that each source STFT is modeled as a sum of elementary components each characterized by
a Power Spectral Density (PSD) wk modulated in time by frame-dependent activation coefficients
hkn. The PSDs characterizing each source are learnt on training data, before the mixture spec-
trogram |X|.2 is decomposed onto the known dictionary W = [w1, . . . ,wK1 ,wK1+1, . . . ,wK1+K2 ].
However, in these papers, the PSDs and the activation coefficients are estimated separately using
somewhat ad-hoc strategies (the PSDs are learnt with vector quantization) and the equivalence
between ML estimation and IS-NMF is not fully exploited.

The generative model (16) may be viewed as a generalization of well-known models of com-
posite signals. For example, inference in superimposed components with Gaussian structure can
be tracked back to (Feder and Weinstein, 1988). In that paper however, the components are as-
sumed stationary and solely modeled by their PSD wk, which is in turn parametrized by a set
of parameters of interest θk, to be estimated. One extension brought in equation (16) is the ad-
dition of the amplitude parameters H. This however has the inconvenient of making the total
number of parameters F K + KN dependent of N , with the consequence of losing asymptotical
optimality properties of ML estimation. But note that it is precisely the addition of the amplitude
parameters in the model that allows W to be treated as a set of possibly identifiable parame-
ters. Indeed, if hkn is set to 1 for all k and n the variance of xn becomes

∑
k wk for all n, i.e,

is equal to the sum of the parameters. This obviously makes each PSD wk not uniquely identifiable.

Very interestingly, the equivalence between IS-NMF and ML inference in sum of Gaussian com-
ponents provides means of reconstructing the components ck,n with a sense of statistical optimality,
which contrasts with NMF using other divergences where methods of reconstructing components
from the factorization WH are somewhat ad-hoc (see below). Indeed, given W and H, minimum
mean square error (MMSE) estimates can be obtained through Wiener filtering, such that

ĉk,fn =
wfk hkn∑K
l=1 wfl hln

xfn. (21)

The Wiener gains summing up to 1 for a fixed entry (f, n) the decomposition is conservative, i.e,

xn =
K∑
k=1

ĉk,n. (22)
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Note that a consequence of Wiener reconstruction is that the phase of all components ĉk,fn is equal
to the phase of xfn.

Most works in audio have considered the NMF of magnitude spectra |X| instead of power spectra
|X|.2, see, e.g, (Smaragdis and Brown, 2003; Smaragdis, 2007; Virtanen, 2007; Bertin et al., 2007).
In that case, it can be noted (see, e.g, Virtanen et al. (2008)), that KL-NMF is related to the ML
problem of estimating W and H in the model structure

|xn| =
K∑
k=1

|ck,n| (23)

under Poissonian assumptions, i.e, ck,fn ∼ P(wfkhkn), where P(λ) is the Poisson distribution,
defined in Appendix A. Indeed, the sum of Poisson random variables being Poissonian itself (with
the shape parameters summing up as well), one obtains xfn ∼ P(

∑K
k=1 wfkhkn). Then, it can

easily be seen that the likelihood − log p(X|W,H) is equal up to a constant to DKL( |X| |W H).
Here, W is homogeneous to a magnitude spectrum and not to a power spectrum. After factor-
ization, component estimates are typically formed using the phase of the observations (Virtanen,
2007), such that

ĉk,fn = wfk hkn arg(xfn), (24)

where arg(x) denotes the phase of complex scalar x. This approach is worth a few comments.
First, the Poisson distribution is formerly only defined for integers, which impairs statistical inter-
pretation of KL-NMF on non-countable data such as audio spectra. Second, this approach enforces
nonnegativity somehow arbitrarily way by taking the absolute value of data X. In contrast, with
the Gaussian modelling, nonnegativity arises naturally through the variance fitting problem equiv-
alence. Similarly, the reconstruction method enforces the components to have same phase as
observation coefficients, while this is only a consequence of Wiener filtering in the Gaussian mod-
elling framework. Last, the component reconstruction method is not statistically-grounded and is
not conservative, i.e xn ≈

∑K
k=1 ĉk,n. Note that Wiener reconstruction is used with KL-NMF of

the magnitude spectrum |X| by Smaragdis (2007), where it is presented as spectral filtering and
its conservativity is pointed out.

2.3.3 Multiplicative noise

Theorem 2 (IS-NMF as ML estimation in Gamma multiplicative noise). Consider the generative
model

V = (WH) .E (25)

where E is multiplicative independent and identically-distributed (i.i.d.) Gamma noise with mean
1. Then, maximum likelihood estimation of W and H is equivalent to NMF of V into V ≈WH,
where the Itakura-Saito divergence is used.

Proof. Let us note {efn} the entries of E. We have vfn = v̂fn efn, with p(efn) = G(efn|α, β), and
where G(x|α, β) is the Gamma probability density function (pdf) defined in Appendix A. Under

the i.i.d. noise assumption, the minus log likelihood CML,2(W,H) def= − log p(V|W,H) writes

CML,2(W,H) = −
∑
f,n

log p(vfn|v̂fn) (26)

= −
∑
f,n

log G (vfn/v̂fn|α, β) /v̂fn (27)

c= β
∑
f,n

vfn
v̂fn
− α

β
log

vfn
v̂fn
− 1 (28)

The ratio α/β is simply the mean of the Gamma distribution. When it is equal to 1, we obtain
that CML,2(θ) is equal to DIS(V|V̂) = DIS(V|W H) up to a positive factor and a constant.
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Algorithm 1 IS-NMF/MU
Input : nonnegative matrix V
Output : nonnegative matrices W and H such that V ≈WH
Initialize W and H with nonnegative values
for i = 1 : niter do

H← H.W
T ((WH).−2.V)
WT (WH).−1

W←W. ((WH).−2.V) HT

(WH).−1 HT

Normalize W and H
end for

The multiplicative noise equivalence explains the scale invariance of the IS divergence, because
the noise acts as a scale factor on v̂fn. On the opposite, EUC-NMF is equivalent to ML likelihood
estimation of W and H in additive i.i.d. Gaussian noise. The influence of additive noise is greater
on coefficients of V̂ with small amplitude (i.e, low SNR) than on the largest ones. As to KL-
NMF, it neither corresponds to multiplicative nor additive noise but actually corresponds to ML
estimation in Poisson noise.1 To summarize, we have

EUC-NMF: p(vfn|v̂fn) = N (vfn|v̂fn, σ2), (29)
KL-NMF: p(vfn|v̂fn) = P(vfn|v̂fn), (30)

IS-NMF: p(vfn|v̂fn) =
1
v̂fn
G
(
vfn
v̂fn
|α, 1

α

)
, (31)

and in all cases, E{vfn|v̂fn} = v̂fn.

Theorem 2 reports in essence how Abdallah and Plumbley (2004) derive a “statistically mo-
tivated error measure”, which happens to be the IS divergence, in the very similar context of
nonnegative sparse coding (see also developments in Plumbley et al. (2006)). Pointing out the
scale invariance of this measure, this work leads Virtanen (2007) to consider the IS divergence
(but again without referring to it as such) for NMF in the context of single-channel source sepa-
ration, but the algorithm is applied to the magnitude spectra instead of the power spectra, losing
statistical coherence, and the sources are reconstructed through equation (24) instead of Wiener
filtering.

3 Algorithms for NMF with the Itakura-Saito divergence

In this section we describe two algorithms for IS-NMF. The first one has a multiplicative structure
and is only a special case of the derivations of Section 2.1. The second one is of a novel type,
EM-based, and is derived from the statistical presentation of IS-NMF as given in Theorem 1.

3.1 Multiplicative gradient descent algorithm

A multiplicative gradient descent IS-NMF algorithm is obtained by either setting β = 0 in (11)
and (12) or setting φ(y) = − log(y) in (13) and (14). The resulting update rules coincide and lead
to Algorithm 1. These update rules were also obtained by Abdallah and Plumbley (2004), prior
to (Dhillon and Sra, 2005; Cichocki et al., 2006). In the following, we refer to this algorithm as
“IS-NMF/MU”. This algorithm includes a normalization step at every iteration, which eliminates
trivial scale indeterminacies leaving the cost function unchanged. We impose ‖wk‖2 = 1 and scale
hk accordingly. Again, we emphasize that continual descent of the cost function is observed in
practice with this algorithm, but that we were not able to come up with a proof of convergence.

1KL-NMF is wrongly presented as ML in additive Poisson noise in numerous publications.

9



3.2 SAGE algorithm

We now describe an EM-based algorithm for estimation of the parameters θ = {W,H}, derived
from the statistical formalism introduced in Theorem 1. The additive structure of the generative
model (16) allows to update the parameters describing each component Ck

def= [ck,1, . . . , ck,N ]
separately, using SAGE (Fessler and Hero, 1994). SAGE is an extension of EM for data models
with particular structures, including data generated by superimposed components. It is known
to converge faster in iterations than standard EM, though one iteration of SAGE is usually more
computationally demanding than EM as it usually requires to update the sufficient statistics “more
often”. Let us consider a partition of the parameter space θ =

⋃K
k=1 θk with

θk = {wk, hk} , (32)

where we recall that wk is the kth column of W and hk is the kth row of H. The SAGE algorithm
involves choosing for each subset of parameters θk a hidden-data space which is complete for this
particular subset. Here, the hidden-data space for θk is simply chosen to be Ck

def= [ck,1, . . . , ck,N ].
An EM-like functional is then built for each subset θk as the conditional expectation of the minus
log likelihood of Ck, which writes

QML
k (θk|θ′)

def= −
∫
Ck

log p(Ck|θk) p(Ck|X,θ′) dCk. (33)

One iteration i of the SAGE algorithm then consists of computing (E-step) and minimizing (M-
step) QML

k (θk|θ′) for k = 1, . . . ,K. Note that θ′ always contains the most up-to-date parameters
value, and not only the values at iteration i − 1 like in standard EM. This leads to the above-
mentioned increase in computational burden, which is mild in our case.

The derivations of the SAGE algorithm for IS-NMF are detailed in Appendix B. However, for a
fixed k, the E-step merely consists of computing the posterior power Vk of component Ck, defined
by [Vk]fn = vk,fn = |µpostk,fn|2 + λpostk,fn, where µpostk,fn and λpostk,fn are the posterior mean and variance
of ck,fn, given by

µpostk,fn =
wfk hkn∑
l wfl hln

xfn, (34)

λpostk,fn =
wfk hkn∑
l wfl hln

∑
l 6=k

wfl hln. (35)

The M-step is then shown to amount to the following one-component NMF problem

min
wk, hk≥0

DIS(V′k |wk hk) (36)

where V′k denotes Vk as computed from θ′. Interestingly, in the one-component case, the gradients
simplify to

∇hkn QML
k (wk, hk|θ′) =

F

hkn
− 1
h2
kn

F∑
f=1

v′k,fn
wfk

, (37)

∇wfk QML
k (wk, hk|θ′) =

N

wfk
− 1
w2
fk

N∑
n=1

v′k,fn
hkn

. (38)

The gradients are easily zeroed, leading to the following updates

h
(i+1)
kn =

1
F

∑
f

v′k,fn

w
(i)
fk

, (39)

w
(i+1)
fk =

1
N

∑
n

v′k,fn

h
(i+1)
kn

, (40)
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Algorithm 2 IS-NMF/EM
Input : nonnegative matrix V
Output : nonnegative matrices W and H such that V ≈WH
Initialize W and H with nonnegative values
for i = 1 : niter do

for k = 1 : K do
Compute Gk = wkhk

WH % Wiener gain
Compute Vk = Gk.(Gk.V + W−kH−k) % Posterior power of Ck

hk ← 1
F (w.−1

k )T Vk % Update row k of H
wk ← 1

NVk (h.−1
k )T % Update column k of W

Normalize wk and hk
end for

end for

% Note that WH = V̂ needs to be computed only once, at initialization.
Indeed, W−kH−k can be computed as V̂ − wold

k holdk before V̂ is subsequently

updated as V̂ = W−kH−k + wnew
k hnewk .

which guarantees QML
k (w(i+1)

k , h
(i+1)
k |θ′) ≤ QML

k (w(i)
k , h

(i)
k |θ

′). This can also be written in matrix
form, as shown in Algorithm 2, which summarizes the SAGE algorithm for IS-NMF. In the follow-
ing, we will refer to this algorithm as “IS-NMF/EM”.

IS-NMF/EM and IS-NMF/MU have same complexity O(12FKN) per iteration, but can lead
to different run times, as shown in the results below. Indeed, in our Matlab implementation,
the operations in IS-NMF/MU can be efficiently vectorized using matrix entrywise multiplication,
while IS-NMF/EM requires looping over the components, which is more time consuming.

The convergence of IS-NMF/EM to a stationary point of DIS(V|WH) is granted by property
of SAGE. However, it can only converge to a point in the interior domain of the parameter space,
i.e, W and H cannot take entries equal to zero. This is seen in equation (36): if either wfk or
hkn is zero, then the cost dIS(v′k,fn|wfkhkn) becomes infinite. This is not a feature shared by
IS-NMF/MU, which does not a priori exclude zero coefficients in W and H (but excludes v̂fn = 0,
which would lead to a division by zero). However, because zero coefficients are invariant under
multiplicative updates (see Section 2.1), if IS-NMF/MU attains a fixed point solution with zero
entries, then it cannot be determined if the limit point is a stationary point. Yet, if the limit
point does not take zero entries (i.e, belongs to the interior of the parameter space) then it is a
stationary point, which may or may not be a local minimum. This is stressed by Berry et al. (2007)
for EUC-NMF but holds for IS-NMF/MU as well.

Note that SAGE has been used in the context of single-channel source separation by Ozerov
et al. (2007) for inference on a model somehow related to the IS-NMF model (16). Indeed, these
authors address voice/music separation using a generative model of the form xn = cV,n + cM,n

where the first component represents voice while the second one represents music. Then, each
component is given a Gaussian mixture model (GMM). The GMM parameters for voice are learnt
from training data, while the music parameters are adapted to data. Though related, the GMM
and NMF models are quite different in essence. The first one expresses the signal as a sum of two
components that can each take different states. The second one expresses the signal as a sum of
K components, each representative of one object. It cannot be claimed that one model is better
than the other, but that they rather address different characteristics. It is anticipated that the
two models can be used jointly within the SAGE framework, for example, by modelling voice cV,n
with a GMM (i.e, a specific component with many states) and music cM,n with a NMF model (i.e,
a composite signal with many components).
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4 Analysis of a short piano excerpt

In this section we report an experimental comparative study of the above-mentioned NMF al-
gorithms applied to the spectrogram of a short monophonic piano sequence. In a first step we
compare the results of multiplicative Euclidean, KL and IS NMF algorithms for several values of
K, before we more specifically compare the multiplicative and EM-based algorithms for IS-NMF
in a second step.

4.1 Experimental setup

A real piano sequence, played from score given in figure 2 on a Yamaha DisKlavier MX100A up-
right piano, was recorded in a small size room by a Schoeps omnidirectional microphone, placed
about 15 cm (6 in) above the opened body of the piano. The sequence is composed of 4 notes,
played all at once in the first measure and then played by pairs in all possible combinations in the
subsequent measures. The 15.6 seconds long recorded signal was downsampled to νs = 22050 Hz,
yielding T = 339501 samples. A STFT X of x was computed using a sinebell analysis window of
length L = 1024 (46 ms) with 50 % overlap between two frames, leading to N = 674 frames and
F = 513 frequency bins. The time-domain signal x and its log-power spectrogram are represented
on figure 2.

IS-NMF/MU, IS-NMF/EM and the multiplicative gradient descent NMF algorithms with Eu-
clidean and KL costs were implemented in Matlab and run on data V = |X|.2. Note that in the
following the terms “EUC-NMF” and “KL-NMF” will implicitly refer to the multiplicative imple-
mentation of these NMF techniques. All algorithms were run for several values of the number of
components, more specifically for K = 1, . . . , 10. For each value of K, 10 runs of each algorithm
were produced from 10 random initializations of W and H, chosen, in Matlab notations, as W =
abs(randn(F,K)) + ones(F,K) and H = abs(randn(K,N)) + ones(K,N). The algorithms were
run for niter = 5000 iterations.

4.2 Pitch estimation

In the following results, it will be observed that some of the basis elements (columns of W) have a
pitched structure, characteristic of individual musical notes. If pitch estimation is not the objective
per se of the following study, it is informative to check if correct pitch values can be inferred from
the factorization. As such, a fundamental frequency (or pitch) estimator is applied using the
method described in (Vincent et al., 2007). It consists in computing dot products of wk with a set
of J frequency combs and retaining the pitch number corresponding to the largest dot product.
Each comb is a cosine function with period fj , scaled and shifted to the amplitude interval [0 1],
that takes its maximum value 1 at bins multiple of fj . The set of fundamental frequency bins
fj = νj

νs
L is indexed on the MIDI logarithmic scale, i.e, such that

νj = 440× 2
pj−69

12 . (41)

The piano note range usually goes from pmin = 21, i.e, note A0 with fundamental frequency
fmin = 27.5 Hz, to pmax = 108, i.e, note C8 with frequency fmax = 4186 Hz. Two adjacent keys
are separated by a semitone (∆p = 1). The MIDI pitch number of the notes pictured on figure 2
are 61 (D[

4), 65 (F4), 68 (A[4) and 72 (C5), and were chosen arbitrarily. In our implementation of
the pitch estimator, the MIDI range was sampled from 20.6 to 108.4 with step 0.2. In the following,
an arbitrary pitch value of 0 will be given to unpitched basis elements; the classification of pitched
and unpitched elements was done manually by looking at the basis elements and listening to the
component reconstructions.

4.3 Results and discussion

Convergence behavior and algorithm complexities Run times of 1000 iterations of each of
the four algorithms are shown in Table 1, together with the algorithm complexities. Figure 3 shows
for each algorithm and for every value of K the final cost values of the 10 runs, after the 5000
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algorithm iterations. A first observation is that the minimum and maximum cost values differs, for
K > 4 in the Euclidean case, K > 3 in the KL case and K > 2 in the IS case. This either means
that the algorithms have failed to converge after 5000 iterations in some cases, or suggests the
presence of local minima. Figure 4 displays for all 4 algorithms the evolution of the cost functions
along the 5000 iterations for all of the 10 runs, in the particular case K = 6.

Evolution of the factorizations with order K In this paragraph we examine in details the
underlying semantics of the factorizations obtained with all three cost functions. We here only
address the comparison of factorizations obtained from the three multiplicative algorithms. IS-
NMF/EM and IS-NMF/MU will be more specifically compared in the next paragraph. Otherwise
stated, the factorizations studied below are those obtained from the run yielding the minimum
cost value among the 10 runs. Figures 5 to 8 display the columns of W and corresponding rows
of H. The columns of W are represented against frequency bin f on the left (in log10 amplitude
scale) while the rows of H are represented against frame index n on the right (in linear amplitude
scale). Pitched components are displayed first (top to down, in ascending order of estimated pitch
value), followed by the unpitched components. For sake of conciseness only part of the results are
reproduced in this article but we emphasize that the factorizations obtained with all four algorithms
for K = 4, 5, 6 are available online at (Companion Web Site), together with sound reconstructions
of the individual components. Component STFTs Ĉk were computed by applying the Wiener
filter (21) to X using the factors W and H obtained with all 3 cost functions. Time-domain
components ck were then reconstructed by inverting the STFTs using an adequate overlap-add
procedure with dual synthesis window. By conservativity of Wiener reconstruction and linearity
of the inverse-STFT, the time-domain decomposition is also conservative, i.e, such that

x =
K∑
k=1

ck. (42)

Common sense suggests that choosing as many components as notes forms a sensible guess for
the value of K, so as to obtain a meaningful factorization of |X|.2 where each component would be
expected to represent one and only one note. The factorizations obtained with all three costs for
K = 4 prove that this is not the case. Euclidean and KL-NMF rather successfully extracts notes
65 and 68 into separate components (second and third), but notes 61 and 72 are melted into the
first component while a fourth component seems to capture transient events corresponding to the
note attacks (sound of the hammer hitting the string) and the sound produced by the release of the
sustain pedal. The first two components obtained with IS-NMF have a similar interpretation to
those given by EUC-NMF and KL-NMF. However the two other components differ in nature: the
third component comprise note 68 and transients, while the fourth component is akin to residual
noise. It is interesting to notice how this last component, though of much lower energy than the
others components (in the order of 1 compared to 104 for the others) bears equal importance in
the decomposition. This is undoubtedly a consequence of the scale invariance property of the IS
divergence discussed in Section 2.2.

A fully separated factorization (at least as intended) is obtained for K = 5 with KL-NMF, as
displayed on figure 5. This results in four components each made up of a single note and a fifth
component containing sound events corresponding to note attacks and pedal releases. However
these latter events are not well localized in time, and suffer from an unnatural tremolo effect (oscil-
lating variations in amplitudes), as can be heard from the reconstructed sound files. Surprisingly,
the decomposition obtained with EUC-NMF by setting K = 5, results in splitting the second com-
ponent of the K = 4 decomposition in two components with estimated pitches 65 and 65.4, instead
of actually demixing the third component which comprised notes 61 and 72. As for IS-NMF, the
first component now groups notes 61 and 68, the second and third components respectively capture
notes 65 and 72, the fourth component is still akin to residual noise, while the fifth component
perfectly renders the attacks and releases.

Full separation of the individual notes is finally obtained with Euclidean and IS costs for K = 6,
as shown on figures 6 and 7. KL-NMF produces an extra component (with pitch estimate 81) which
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is not clearly interpretable, and is in particular not akin to residual noise as could have been hoped
for. The decomposition obtained with the IS cost describes as follows. The four first components
correspond to individual notes whose pitch estimate match exactly the pitches of the notes played.
The visual aspect of the PSDs is much better than the basis elements learnt from EUC-NMF and
KL-NMF. The fifth component captures the hammer hits and pedal releases with great accuracy
and the sixth component is akin to residual noise.

When the decomposition is carried on beyond K = 6, it is observed that EUC-NMF and
KL-NMF split existing components into several subcomponents (such as components capturing
sustained and decaying parts of one note) with pitch in the neighborhood of the note fundamental
frequency. On the opposite, IS-NMF/MU spends the extra components in fine-tuning the rep-
resentation of the low energy components, i.e, residual noise and transient events (as such, the
hammer hits and pedal releases eventually get split in two distincts components). As such, for
K = 10, the pitch estimates reads EUC-NMF: [61 64.8 64.8 65 65 65.8 68 68.4 72.2 0], KL-NMF:
[61 61 65 65 66 68 72 80.2 0 0], IS-NMF/MU: [61 61 65 68 72 0 0 0 0 0]. If note 61 is indeed split
in 2 components with IS-NMF/MU, one of the two components is actually inaudible.

The message we want to bring out from this experimental study is the following. The nature
of the decomposition obtained with IS-NMF, and its progression as K increases, is in accord with
an object-based representation of music, close to our own comprehension of sound. Entities with
well-defined semantics emerge from the decomposition (individual notes, hammer hits, pedal re-
leases, residual noise) while the decompositions obtained from the Euclidean and KL costs are less
interpretable from this perspective. We need to mention that these conclusions do not always hold
when the factorization is not the one yielding the lowest cost values from the 10 runs. As such,
we also examined the factorizations with highest cost values (with all three cost functions) and
we found out that they did not reveal the same semantics, which was in turn not always easily
interpretable. The upside however is that lowest IS cost values correspond to the most desirable
factorizations indeed, so that IS-NMF “makes sense”.

Comparison of multiplicative and EM-based IS-NMF Algorithms IS-NMF/MU and IS-
NMF/EM are designed to address the same task of minimizing the cost DIS(V|WH), so that the
achieved factorization should be identical in nature provided they complete this task. As such,
the progression of the factorization provided by IS-NMF/EM is similar to the one observed for
IS-NMF/MU and described in the previous paragraph. However, the resulting factorizations are
not exactly equivalent, because IS-NMF/EM does not inherently allow zeros in the factors (see
Section 3.2). This feature can be desirable for W as the presence of sharp notches in the spectrum
may not be physically realistic for audio, but can be considered a drawback as far as H is concerned.
Indeed, the rows of H being akin to activation coefficients, when a sound object k is not present
in frame n, then hkn should be strictly zero. These remarks probably explain the factorization
obtained from IS-NMF/EM with K = 6, displayed on figure 8. The notches present in the PSDs
learnt with IS-NMF/MU, as seen on figure 7, have disappeared from the PSDs on figure 8, which
exhibit better regularity. Unfortunately, IS-NMF/EM does not fully separate out the note attacks
in the fifth component, like IS-NMF/MU does. Indeed, parts of the attacks appear in the second
component, and the rest appears in the fifth component, which also contains the pedal releases.
This is possibly explained by the a priori high sparsity of a transients component, which can be
handled by IS-NMF/MU but not IS-NMF/EM (because it does not allow zero values in H). Note
that increasing the number of components K or the number of algorithm iterations niter does not
solve this specific issue.

Regarding compared convergence of the algorithms, IS-NMF/MU decreases the cost function
much faster in the initial iterations and, with this data set, attains lower final cost values than
IS-NMF/EM, as shown on figure 3 or figure 4 for K = 6. As already mentioned, though the two
algorithms have the same complexity, the run time per iteration of IS-NMF/MU is smaller than
IS-NMF/EM for K > 3, see Table 1.
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5 Regularized IS-NMF

We now describe how the statistical setting going along with IS-NMF can be exploited to incor-
porate regularization constraints/prior information in the factors estimates.

5.1 Bayesian setting

We consider a Bayesian setting where W and H are given (independent) prior distributions p(W)
and p(H). We are looking for a joint MAP estimate of W and H through minimization of criterion

CMAP (W,H) def= − log p(W,H|X) (43)
c= DIS(V|WH)− log p(W)− log p(H) (44)

When independent priors of the form p(W) =
∏
k p(wk) and p(H) =

∏
k p(hk) are used, then the

SAGE algorithm presented in Section 3.2 can again be used for MAP estimation. In that case, the
functionals to be minimized for each component k write

QMAP
k (θk|θ′)

def= −
∫
Ck

log p(θk|Ck) p(Ck|X,θ′) dCk (45)

c= QML
k (wk, hk|θ′)− log p(wk)− log p(hk) (46)

Thus, the E-step still amounts to computing QML
k (wk, hk|θ′), as done in Section 3.2, and only the

M-step is changed by the regularization constraints − log p(wk) and − log p(hk) which now need
to be taken into account.

Next we more specifically consider Markov chain priors favoring smoothness over the rows of
H. In the following results no prior structure will be assumed for W (i.e, W is estimated through
ML). However, we stress that the methodology presented for the rows of H can equivalently be
transposed to the columns of W, that prior structures can be imposed on both W and H and
that these structures need not to belong to the same class of models. Note also that since the
components are treated separately, they can each be given a different type of model (for example
some components could be assigned a GMM, as discussed at the end of Section 3.2).

We assume the following prior structure for hk,

p(hk) =
N∏
n=2

p(hkn|hk(n−1)) p(hk1), (47)

where p(hkn|hk(n−1)) is a pdf with mode hk(n−1). The motivation behind this prior is to constrain
hkn not to differ significantly from its value at entry n − 1, hence favoring smoothness of the
estimate. Possible pdf choices are, for n = 2, . . . , N ,

p(hkn|hk(n−1)) = IG(hkn|α, (α+ 1)hk(n−1)) (48)

and
p(hkn|hk(n−1)) = G(hkn|α, (α− 1)/hk(n−1)) (49)

where G(x|α, β) is the previously introduced Gamma pdf, with mode (α − 1)/β (for α ≥ 1) and
IG(x|α, β) is the inverse-Gamma pdf (see Appendix A), with mode β/(α + 1). Both priors are
constructed so that their mode is obtained for hkn = hk(n−1). α is a shape parameter that controls
the sharpness of the prior around its mode. A high value of α will increase sharpness and will
thus accentuate smoothness of hk while a low value of α will render the prior more diffuse and
thus less constraining. The two priors become actually very similar for large values of α, as shown
on figure 9. In the following, hk1 is assigned the scale-invariant Jeffreys noninformative prior
p(hk1) ∝ 1/hk1.
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5.2 New updates

Under prior structure (47), the derivative of QMAP
k (wk, hk|θ′) wrt hkn writes, ∀n = 2, . . . , N − 1,

∇hkn QMAP
k (wk, hk|θ′) =

∇hkn QML
k (wk, hk|θ′)−∇hkn log p(hk(n+1)|hkn)−∇hkn log p(hkn|hk(n−1)) (50)

This is shown to be equal to

∇hkn QMAP
k (wk, hk|θ′) =

1
h2
kn

(p2 h
2
kn + p1 hkn + p0) (51)

where the values of p0, p1 and p2 are specific to the type of prior employed (Gamma or inverse-
Gamma chains), as given in Table 2. Updating hkn then simply amounts to solving an order 2
polynomial. The polynomial has only one nonnegative root, given by

hkn =

√
p2

1 − 4 p2 p0 − p1

2 p2
. (52)

The coefficients hk1 and hkN at the borders of the Markov chain require specific updates, but they
also only require solving polynomials of order either 2 or 1, with coefficients given in Table 2 as well.

Note that the difference between the updates with the Gamma and inverse-Gamma chains prior
mainly amounts to interchanging the positions of hk(n−1) and hk(n+1) in p0 and p2. Interestingly,
it can be noticed that using a backward Gamma chain prior p(hk) =

∏N−1
n=1 p(hkn|hk(n+1)) p(hkN )

with shape parameter α is actually equivalent (in terms of MAP updates) to using a forward
inverse-Gamma chain prior as in equation (47) with shape parameter α− 2. Respectively, using a
backward inverse-Gamma chain prior with with shape parameter α is equivalent to using a “for-
ward” Gamma chain prior with with shape parameter α+ 2.

Note that Virtanen et al. (2008) have recently considered Gamma chains for regularization of
KL-NMF. The modelling proposed in their work is however different than ours. Their Gamma
chain prior is constructed in a hierarchical setting, i.e, by introducing extra auxiliary variables, so
as to ensure conjugacy of the priors with the Poisson observation model. Estimation of the factors
is then carried out with the standard gradient descent multiplicative approach and single-channel
source separation results are presented from the factorization of the magnitude spectrogram |X|
with component reconstruction (24).

6 Learning the semantics of music with IS-NMF

The aim of the experimental study proposed in Section 4 was to analyze the results of several NMF
algorithms on a short, simple and well-defined musical sequence, with respect to the cost function,
initialization and model order. We now present results of NMF on a long polyphonic recording.
Our goal is to examine how much of the semantics can NMF learn from the signal, with a fixed
number of components and a fixed random initialization. This is not easily assessed numerically
in the most general context, but quantitative evaluations could be performed on specific tasks in
simulation settings. Such tasks could include music transcription, like in (Abdallah and Plumbley,
2004), single-channel source separation, like in Benaroya et al. (2003, 2006) or content-based music
retrieval based on NMF features.

Rather than choosing and addressing one of these specific tasks, we here propose to use NMF
in a real-case audio restoration scenario, where the purpose is to denoise and upmix original
monophonic material (one channel) to stereo (two channels). This task is very close to single-
channel source separation, with the difference that we are here not aiming at perfectly separating
each of the sources, but rather isolating subsets of coherent components that can be given different
directions of arrival in the stereo remaster so as to render a sensation of spatial diversity. We
will show in particular that the addition of smoothness constraints on the rows of H lead to more
pleasant component reconstructions, and better brings out the pitched structure of some of the
learnt PSDs.

16



6.1 Experimental setup

We address the decomposition of a 108 seconds-long music excerpt from My Heart (Will Always
Lead Me Back To You) recorded by Louis Armstrong and His Hot Five in the twenties. The band
features (to our best hearing) a trumpet, a clarinet, a trombone, a piano and a double bass. The
data is original unprocessed mono material containing substantial noise. The signal was downsam-
pled to νs = 11025 kHz, yielding T = 1191735 samples. The STFT X of x was computed using a
sinebell analysis window of length L = 256 (23 ms) with 50 % overlap between two frames, leading
to N = 9312 frames and F = 129 frequency bins. The time-domain signal x and its log-power
spectrogram are represented on figure 10.

We applied EUC-NMF, KL-NMF, IS-NMF/MU and IS-NMF/EM to V = |X|.2, as well as a
regularized version of IS-NMF, as described in Section 5. We used the inverse-Gamma Markov
chain prior (48) with α arbitrarily set to 10. We will refer to this algorithm as “IS-NMF/IG”.
Among many trials, this value of α provided a good trade-off between smoothness of the component
reconstructions and adequacy of the components with data. Experiments with the Gamma Markov
chain prior (48) did not lead to significant differences in the results and are not reported here.

The number of components K was arbitrarily set to 10. All five algorithms were run for
niter = 5000 iterations and were initialized with same random values. For comparison, we have
also applied KL-NMF to the magnitude spectrogram |X| with component reconstruction (24), as
this can be considered state of the art methodology for NMF-based single-channel audio source
separation (Virtanen, 2007).

6.2 Results and discussion

For sake of conciseness we here only display the decomposition obtained with IS-NMF/IG, see
figure 12, because it leads to the best results as far as our audio restoration task is concerned,
but we stress that all decompositions and component reconstructions obtained from all NMF
algorithms are available online at (Companion Web Site). Figure 12 displays the estimated basis
functions W in log-scale on the left, and represents on the right the time-domain signal components
reconstructed from Wiener filtering.

Figure 11 displays the evolution of the IS cost along the 5000 iterations with IS-NMF/MU,
IS-NMF/EM and IS-NMF/IG. In this case, IS-NMF/EM achieves a lower cost than IS-NMF/MU.
The run times of 1000 iterations of the algorithms were respectively, EUC-NMF: 1.9 min, KL-
NMF: 6.8 min, IS-NMF/MU: 8.7 min, IS-NMF/EM: 23.2 min and IS-NMF/IG: 32.2 min.

The comparison of the decompositions obtained with the three cost functions (Euclidean, KL
and IS), through visual inspection of W and listening of the components ck, shows again that the
IS divergence leads to the most interpretable results. In particular, some of the columns of matrix
W produced by all three IS-NMF algorithms have a clear pitched structure, which indicates that
some notes have been extracted. Furthermore, one of the components captures the noise in the
recording. Discarding this component from the reconstruction of x yields satisfying denoising (this
is particularly noticeable during the piano solo, where the input SNR is high). Very surprisingly,
most of the rhythmic accompaniment (piano and double bass) is isolated in a single component
(component 1 of IS-NMF/MU, component 2 of IS-NMF/EM and IS-NMF/IG), though its spectral
content is clearly nonstationary. A similar effect happens with IS-NMF/IG and the trombone,
which is mostly contained by component 7.

While we do not have a definite explanation for this, we believe that this is a happy consequence
of Wiener reconstruction. Indeed the Wiener component reconstruction is only seen as a set of K
masking filters applied to xn(f), so that it does not constrain the spectrum of component k to be
exactly wk, like the reconstruction method (24) does. So if one assumes that the NMF model (16)
adequately captures some of the sound entities present in the mix (in our case that would be the
preponderant notes or chords and the noise), then the other entities are bound to be relegated in
remaining components, by conservativity of the decomposition x =

∑K
k=1 ck.

As anticipated, the addition of frame-persistency constraints with IS-NMF/IG impacts the
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learnt basis W. In particular, some of the components exhibit a more pronounced pitch structure.
But more importantly, the regularization yields more pleasant sound reconstructions, this is par-
ticularly noticeable when listening to the accompaniment component obtained from IS-NMF/MU
(component 1) or IS-NMF/EM (component 2) on the one side and from IS-NMF/IG (component
2) on the other side. Note also that in every case the sound quality of Wiener reconstructions is
far better that state of the art KL-NMF of |X| and ad-hoc reconstruction (24).

To conclude this study, we provide online a restored version of the original recording, produced
from the IS-NMF/IG decomposition. This is to our best knowledge the first use of NMF in a
real-case audio restoration scenario. The restoration includes denoising (by discarding component
9, which is regarded as noise) and upmixing. A stereo mix is produced by dispatching parts of each
component to left and right channels, hence simulating directions of arrival. As such, we manually
created a mix where the components are arranged from 54o left to 54o right, such that the wind
instruments (trumpet, clarinet, trombone) are placed left and the stringed instruments (piano,
double bass) are placed right. While this stereo mix does render a sensation of spatialization we
emphasize that its quality could undoubtedly be improved with appropriate sound engineering
skills.

The originality of our restoration approach lays in 1) the joint noise removal and upmix (as
opposed to a suboptimal sequential approach) and 2) the genuine content-based remastering, as
opposed to standard techniques based, e.g, on phase delays and/or equalization.

7 Conclusions

We have presented modelling and algorithmic aspects of NMF with the Itakura-Saito divergence.
On the modelling side, we wish to bring out the following three features of IS-NMF that have been
demonstrated in this paper;

1) IS-NMF is underlain by a statistical model of superimposed Gaussian components,

2) this model is relevant to the representation of audio signals,

3) this model can accommodate regularization constraints through Bayesian approaches.

On the algorithmic side, we have proposed a novel type of NMF algorithm, IS-NMF/EM, de-
rived from SAGE, a variant of the EM algorithm. The convergence of this algorithm to a stationary
point of the cost function DIS(V|WH) is guaranteed by property of EM. This new algorithm was
compared to an existing algorithm, IS-NMF/MU, whose convergence is not proved, though ob-
served in practice. This article also reports an experimental comparative study of the standard
EUC-NMF and KL-NMF algorithms, together with the two described IS-NMF algorithms, applied
to a given data set (a short piano sequence), with various random initializations and model orders.
Such a furnished experimental study was to our best knowledge not yet available. This article
also reports a proof of concept of the use of IS-NMF for audio restoration, with a real example.
Finally, we also believe to have shed light on the statistical implications of NMF with all of three
cost functions.

We have shown how smoothness constraints on W and H can easily be handled in a Bayesian
setting with IS-NMF. As such, we have shown how Markov chains prior structures can improve
both the auditory quality of the component reconstructions and the interpretability of the basis
elements. The Bayesian setting opens doors to even more elaborate prior structures that can better
fit the specificities of data. For music signals we believe that two promising lines of research lay
in 1) the use of switching state models for the rows of H that explicitly model the possibility for
hkn to be strictly zero with a certain prior probability (and time persistency could be favored by
modelling the state sequence with a discrete Markov chain), and 2) the use of models that explicitly
take into account the pitched structure of some of the columns of W, and where the fundamental
frequency could act as a model parameter. These models fit into the problem of object-based
representation of sound, which is an active area of research in the music information retrieval and
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auditory scene analysis communities.

The experiments in this paper illustrate the slow convergence of the described NMF algo-
rithms. The slow convergence of NMF algorithms with multiplicative gradient structure has been
pointed out in other papers, e.g (Berry et al., 2007; Lin, 2007). The proposed IS-NMF/EM does
not improve on this issue, but its strength is to offer enough flexibility to accommodate Bayesian
approaches. Other types of NMF algorithms, based for example on projected gradient or quasi-
Newton methods, have recently been designed to improve convergence of NMF with the Euclidean
distance (Berry et al., 2007; Lin, 2007). Such methods are also expected to perform well in the
case of IS-NMF.

Key issues that still need to be resolved in NMF concern identifiability and order selection. A
related issue is the investigation into the presence of local minima in the cost functions, and ways
to avoid them. In that matter, Markov chain Monte Carlo (MCMC) sampling techniques could be
used as a diagnostic tool to better understand the topography of the criteria to minimize. While it
is not clear whether these techniques can be applied to EUC-NMF or KL-NMF, they can readily be
applied to IS-NMF, using its underlain Gaussian composite structure the same way IS-NMF/EM
does. As to the avoidance of local minima, techniques inheriting from simulated annealing could
be applied with IS-NMF, either in MCMC or EM inference.

Regarding order selection, usual criteria such as the Bayesian information criterion (BIC) or
Akaike’s criterion (see, e.g., Stoica and Selén (2004)) cannot be directly applied to IS-NMF, because
the number of parameters (F K + KN) is not constant wrt the number of observations N . This
feature breaks the validity of the assumptions in which these criteria have been designed. As such,
a final promising line of research concerns the design of methods characterizing p(V|W) instead
of p(V|W,H), treating H as a latent variable, like in independent component analysis (MacKay,
1996; Lewicki and Sejnowski, 2000). Besides allowing for model order selection, such approaches
would lead to more reliable estimation of the basis W.

A Standard distributions

Proper complex Gaussian Nc (x|µ,Σ) = |πΣ|−1 exp−(x− µ)H Σ−1 (x− µ)
Poisson P(x|λ) = exp(−λ) λ

x

x!

Gamma G(u|α, β) = βα

Γ(α) u
α−1 exp(−β u), u ≥ 0

inv-Gamma IG(u|α, β) = βα

Γ(α) u
−(α+1) exp(−βu ), u ≥ 0

The inverted-Gamma distribution is the distribution of 1/X when X is Gamma distributed.

B Derivations of the SAGE algorithm

In this appendix we detail the derivations leading to Algorithm 2. The functions involved in the
definition of QML

k (θk|θ′), given by equation (33), can be derived as follows. The hidden-data minus
log likelihood writes

− log p(Ck|θk) = −
N∑
n=1

F∑
f=1

logNc(ck,fn|0, hkn wfk) (53)

c=
N∑
n=1

F∑
f=1

log (wfk hkn) +
|ck,fn|2

wfk hkn
. (54)

Then, the hidden-data posterior is obtained through Wiener filtering, yielding

p(Ck|X,θ) =
N∏
n=1

F∏
f=1

Nc(ck,fn|µpostk,fn, λ
post
k,fn), (55)
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with µpostk,fn and λpostk,fn given by equations (34) and (35). The E-step is performed by taking the
expectation of (54) wrt the hidden-data posterior, leading to

QML
k (θk|θ′)

c=
N∑
n=1

F∑
f=1

log (wfk hkn) +
|µpostk,fn

′|2 + λpostk,fn

′

wfk hkn
(56)

c=
N∑
n=1

F∑
f=1

dIS(|µpostk,fn

′|2 + λpostk,fn

′ | wfk hkn). (57)

The M-step thus amounts to minimizing DIS(V′k |wk hk) wrt to wk ≥ 0 and hk ≥ 0, as stated in
Section 3.2.
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Figure 1: Euclidean, KL and IS costs d(x|y) as a function of y and for x = 1. The Euclidean
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Figure 2: Three representations of data; (top): original score, (middle): time-domain recorded
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Euclidean distance, (b): KL divergence, (c): IS divergence (using IS-NMF/MU), (d): IS divergence
(using IS-NMF/EM). On each plot, the solid line connects all minimum cost values while the dashed
line connects all maximum cost values.
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K 1 2 3 4 5 10 O(.)
EUC-NMF 17 18 20 24 27 37 4FKN + 2K2(F +N)
KL-NMF 90 90 92 100 107 117 8FKN
IS-NMF/MU 127 127 129 135 138 149 12FKN
IS-NMF/EM 81 110 142 171 204 376 12FKN

Table 1: Run times in seconds of 1000 iterations of the NMF algorithms applied to the piano
data, implemented in Matlab on a 2.16 GHz Intel Core 2 Duo iMac with 2 GB RAM. The run
times include the computation of the cost function at each iteration (for possible convergence
monitoring). The last column shows the algorithm complexities per iteration, expressed in number
of flops (addition, soustraction, multiplication, division). The complexity of EUC-NMF assumes
K < F,N .
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inverse-Gamma Markov chain
p2 p1 p0

hk1 (α+ 1)/hk2 F − α+ 1 −F ĥML
k1

hkn (α+ 1)/hk(n+1) F + 1 −F ĥML
kn − (α+ 1)hk(n−1)

hkN 0 F + α+ 1 −F ĥML
kN − (α+ 1)hk(N−1)

Gamma Markov chain
p2 p1 p0

hk1 0 F + α+ 1 −F ĥML
k1 − (α− 1)hk2

hkn (α− 1)/hk(n−1) F + 1 −F ĥML
kn − (α− 1)hk(n+1)

hkN (α− 1)/hk(N−1) F − α+ 1 −F ĥML
kN

Table 2: Coefficients of the order 2 polynomial to solve in order to update hkn in Bayesian IS-NMF
with a Markov chain prior. ĥML

kn denotes the ML update, given by equation (39).
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