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Discrete All-Pole Modeling 
Amro El-Jaroudi, Member, IEEE, and John Makhoul, Fellow, IEEE 

Abstract-A new method is introduced for parametric modeling of 
spectral envelopes when only a discrete set of spectral points is given. 
This method, which we call discrete all-pole (DAP) modeling, uses a 
discrete version of the Itakura-Saito distortion measure as its error 
criterion. One result is a new autocorrelation matching condition that 
overcomes the limitations of linear prediction and produces better fit- 
ting spectral envelopes for spectra that are representable by a rela- 
tively small discrete set of values, such as in voiced speech. 

We present an iterative algorithm for DAP modeling that is shown 
to converge to a unique global minimum. We also present results of 
applying DAP modeling to real and synthetic speech. DAP modeling is 
extended to allow frequency-dependent weighting of the error mea- 
sure, so that spectral accuracy can be enhanced in certain frequency 
regions relative to others. 

1. INTRODUCTION 
POPULAR approach to speech modeling is to use a time- A varying all-pole spectral shaping filter with a variable ex- 

citation source. This all-pole filter is typically estimated using 
linear prediction methods [ 111. It has been known for some time 
that linear prediction (LP) suffers from drawbacks that are es- 
pecially manifested during voiced segments of speech. Specif- 
ically, the peaks of LP spectral estimates during these segments 
are highly biased towards the pitch harmonics, especially for 
high-pitched sounds and voices [ 111. It has been pointed out 
that the drawbacks of LP are inherent to its error criterion [ 1 1 1. 
To overcome these drawbacks, we propose in this paper a new 
all-pole modeling method based on a discrete form of the Ita- 
kura-Saito distance measure. 

The new method, which we call discrete all-pole (DAP) mod- 
eling, overcomes the well-known limitations of LP and gener- 
ally gives better all-pole spectral envelopes that are less biased 
towards the pitch harmonics. In DAP, we approximate the spec- 
trum of voiced speech, which has its energy located approxi- 
mately at the harmonics of the fundamental pitch, by a line 
(discrete) spectrum. The problem of finding the spectral enve- 
lope is then reduced to fitting an all-pole spectrum to a finite set 
of spectral points so as to minimize the discrete form of the 
Itakura-Saito (I-S) distance measure. We present an algorithm 
to compute the optimal envelopes and show that DAP modeling 
produces generally better fitting spectral envelopes than LP. 

Another advantage of DAP modeling is that the method can 
be extended to allow error weighting as a function of frequency. 
This weighting can be used to emphasize the spectral fit in sec- 
tions of the spectrum at the expense of the fit at other sections. 
This method has known applications in various aspects of speech 
processing where better spectral accuracy is often desired at 
lower frequencies relative to high frequencies. 
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In the next section, we present the known limitations of linear 
prediction. In Section 111, we introduce DAP modeling and de- 
rive the minimization conditions for the discrete form of the I-S 
distance measure. We also examine the possible forms of so- 
lutions one obtains using DAP modeling. In Section IV, we 
derive an iterative algorithm to compute the optimal all-pole 
model and discuss its convergence properties. The results of 
applying DAP modeling to various signals are presented in Sec- 
tion V. In Section VI, we modify DAP modeling to allow 
weighting of the error measure as a function of frequency, and 
the results of weighted DAP are compared to those without 
weighting. 

11. LIMITATIONS OF LINEAR PREDICTIONS 

In this section, we review linear prediction spectral analysis 
and demonstrate, using examples, some of its inherent limita- 
tions. 

The basic concept of linear prediction (LP) is to predict, sub- 
ject to an error criterion, the present value of a signal based on 
its previousp values, wherep is the prediction order. Normally, 
the error criterion used is a least squares distance measure be- 
tween the actual and predicted values. In the frequency domain, 
for discrete spectra defined at a set of frequencies U ,  E Q, the 
LP error criterion is equivalent to minimizing [ 121 

where P( 0 )  is the spectrum of th,e given signal, N is the number 
of discrete frequencies U,, and P (  U )  is the spectrum of the all- 
pole envelope defined as 

Note that, in the definition of P (  w ) ,  we have incorporated the 
gain factor in the coefficients of the denominator, i.e., a. is not 
restricted to 1. We emphasize here that the frequencies U ,  in 
the set Q, which includes both positive and negative frequen- 
cies, can be arbitrary and need not be equally spaced. 

The minimization of ELp with respect to the predictor coef- 
ficients, ak, 1 5 k I p ,  yields a well-known set of normal 
equations: 

P 

k = O  
C R ( i  - k)ak = 0, 1 5 i 5 p ( 3 )  

and 
P 1 

k=O a0 
R(k)Uk = - (4) 

( 5 )  
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is the autocorrelation of the discrete signal spectrum P (  U,). 
Equation (4) was obtained by substituting (3) in (1) and setting 
the energy of the continuous LP spectrum equal to the energy 
R (0) of the given discrete spectrum. 

It is well known [ 111 that by minimizing ELP, we are match- 
ing the autocorrelation of the continuous LP envelope to that of 
the given discrete spectrum. In other words, we are effectively 
setting 

where 

and R (  i ) is the autocorrelation of the discrete spectrum in (5). 
In the following example, we show a typical behavior of LP 

spectral analysis of discrete or harmonic spectra. We will use 
LP to attempt to recover the original all-pole envelope of a pe- 
riodic signal. The spectral envelope shown in solid line in'Fig. 
l(a) represents a synthesis all-pole ( p  = 12) filter which, when 
excited with a periodic pulse sequence having a discrete spec- 
trum with N = 30 frequency points, will give a periodic signal 
whose line spectrum is shown in the figure. If we perform LP 
analysis on the periodic signal, we obtain the dashed envelope 
shown in Fig. l(a). Clearly, the LP envelope does not match 
the original envelope nor does it fit the discrete spectrum. While 
there is a unique all-pole envelope (the original) that perfectly 
fits the discrete spectrum, LP fails to recover that all-pole en- 
velope. It has been shown [12] that for discrete spectra the LP 
error measure (1) possessss an error cancellation property which 
makes it select an envelope other than the only one which passes 
through all the spectral points. 

We now show that it would be unreasonable to expect LP to 
recover the original envelope from the discrete spectral sam- 
ples. We define Rorg to be the autocorrelation corresponding to 
the original all-pole filter with spectrum P( U ) .  Rorg ( i ) and 
P ( w )  are related by the standard transform pair 

and 
m 

P ( O )  = C R , ~ ~ ( I )  e-]"'. (9)  
I=  - m  

The autocorrelation R corresponding to the discrete samples of 
the synthesis envelope is defined in (5). By substituting (9) in 
(3, we find that R is related to R,, by 

, for all i. (IO) R ( i )  = - c R o r g ( I )  e-Jutf1( ' - ' )  

This equation shows the aliasing that occurs in the autocorre- 
lation domain whenever a spectral envelope is sampled at a dis- 
crete set of frequencies. For the periodic excitation case, the 
frequencies w, will be equally spaced at U, = 27r(m - l ) /N,  
and (10) reduces to 

l N  
N m = !  I = - m  

m 

R ( i )  = Rorg( i  - I N ) ,  for all i. (11) 

For the example above, we show, in Figs. l(b) and (c), Rorg( i ) 
and R (  i ) for lags 0 I i 5 75 and excitation period N = 30. 
Note that R (  i ) as obtained by aliasing Rorg ( i  ) as given by (1 1). 

[ =  - m 

i 

1 

Fig. 1. (a) Example of the limitations of linear prediction spectral analy- 
sis. The solid line is the original 12-pole envelope which goes through all 
the points. The dashed line is the 12-pole LP model for N = 30 spectral 
lines. (b) Rorg ( i  ) for lags 0 5 i 5 75 and excitation period N = 30. (c) 
Autocorrelation R (  i ), 0 c i 5 75, corresponding to the discrete spectrum 
in Fig. l(a). (d) Autocorrelation RLP(i), 0 5 i I 75,  corresponding to 
the LP envelope in Fig. I(a). (e )  Discrete frequency sampled impulse re- 
sponse h( i ), -37 I i I 37 corresponding to the discrete spectrum in Fig. 
I@). 
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As shown in (6 ) ,  LP matches the autocorrelation of the con- 
tinuous model spectrum to that of the given spectrum. By ap- 
plying this matching to the example shown above, we obtain 

In other words, since the autocorrelation corresponding to the 
LP envelope will always equal an aliased version of Rorg (for 
the discrete spectrum case), the LP envelope will not equal the 
original envelope. It is also important to note that LP produces 
a unique all-pole model given a set of autocorrelations, which 
means that the original all pole is not a possible solution to (3). 
The autocorrelation R,, ( i  ), 0 I i s 75, corresponding to the 
LP envelope in the example above is shown in Fig. l(d). We 
note that RLp( i ) in Fig. l(d) is equal to R( i ) in Fig. l(c) for 
the first 13 lags (since p = 12) and, very importantly, that 
RLP ( i  ) is very different from the original autocorrelation Rorg 
shown in Fig. l(b). The LP error criterion matches the auto- 
correlation of the continuous all-pole model to the autocorre- 
lation of the given signal without taking into account the aliasing 
that has occurred in the discrete spectrum. This interpretation 
of LP spectral estimation explains the sensitivity of LP esti- 
mates to high-pitched sounds. As the pitch increases, we have 
fewer and fewer harmonics (spectral samples) and the autocor- 
relation aliasing becomes more and more severe, which in turn, 
leads to worse LP models. 

In Fig. 2(a), we show the same example as in Fig. 1 for N = 
30 and nonperiodic excitation. The discrete spectral lines shown 
in the figure are not equidistant and are not multiples of some 
fundamental frequency. The original envelope is shown in solid 
line and the LP envelope in dashed. Once again, LP fails to 
recover the original envelope. It is easy to understand why the 
LP estimate was so poor by examining the autocorrelations cor- 
responding to the original envelope and the discrete spectrum. 
These autocorrelations are shown in Fig. 2(b) and (c), respec- 
tively. We note how very different the aliased autocorrelation 
is from the original one. Consequently, the LP envelope whose 
autocorrelation is shown in Fig. 2(d) and is equal to the aliased 
autocorrelation for the first 13 lags, will also be very different 
from the original one. These examples show that LP is the 
wrong approach to envelope estimation for discrete spectra since 
it does not account for the aliasing caused by spectral sampling 
(periodic or nonperiodic). 

This disregard to autocorrelation aliasing is demonstrated 
again in the following one-pole example. Given a single pole 
filter, with a real pole at z = p ,  excited by a periodic sequence 
with period N ,  one can show [2] that the resulting signal will 
have a normalized first autocorrelation lag R ( 1 ), given by 

When we perform LP analysis on the periodic signal, the re- 
sulting one-pole LP envelope will have a pole at z = pLp = 
R ( l )  = ( p N - '  + p)/(l + p N ) .  Forp  = 0.95 and N = 10, for 
example, we have pLp = 0.99. Clearly, the LP envelope will 
have a much narrower bandwidth than the original one. We note 
from (13) that, as N gets larger, R( l ) ,  and hence pLp, will ap- 
proach p ,  which as N + 03 corresponds to the continuous spec- 
trum case. However, for many applications, especially for high- 
pitched speech, as N decreases, LP autocorrelation matching 

Fig. 2 .  (a) Example of the limitations of linear prediction spectral analysis 
for nonperiodic but discrete spectra. The solid line is the original 12-pole 
envelope; t& dashed line is the 12-pole LP model for N = 30 spectral 
lines. (b) Rocg( i  ) for lags 0 5 i 5 75 corresponding to the solid envelope 
in Fig. 2(a). (c) Autocorrelation R ( i  ), 0 5 i I 75, corresponding to the 
discrete spectrum-in Fig. 2(a) with N = 30 nonharmonic spectral lines. (d) 
Autocorrelation RLP( i), 0 5 i I 75, corresponding to the LP envelope in 
Fig. 2(a). 

often produces suboptimal and inadequate results. This match- 
ing is forced upon us by the error measure used for LP. 

To improve upon the LP estimate, researchers have devised 
methods with either a different error criterion or with added 
constraints to regular LP (e.g., [4], 151, [8], [9], [15]-1171, 
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[20]). These methods can be divided into time domain tech- 
niques and frequency domain techniques. In his time domain 
approach, Lee [9] weights the residual error so that time seg- 
ments that are well predicted influence the all-pole estimate 
more than the other segments which contain large residual val- 
ues due to excitation pulses. A similar but less general method 
was proposed earlier by Mizoguchi [15]. In another time do- 
main approach, Rose and Clements [19] use a residual peaki- 
ness measure and select the all-pole model that maximizes it. 
Also, there are some all-pole estimation methods [ 81, [ 161, 1201, 
[ 171, especially in coding applications, where, given the exci- 
tation, one selects the predictor that best matches the synthetic 
to the original speech. 

In his frequency domain approach, Hermansky [5] attempts 
to generate more frequency samples of the original envelope by 
interpolating between the measured harmonic peaks, and then 
fits an all pole to the new set of frequency points using LP. In 
a different method, Hermansky [4] improves the LP fit by first 
transforming the measured spectrum to modify its dynamic 
range, then fits an LP envelope to the transformed spectrum. In 
another approach, McAulay [ 141 makes a Gaussian assumption 
about the observed time sequence then uses a maximum likeli- 
hood approach and some approximations to estimate the param- 
eters of an all-pole filter given the samples of the discrete 
spectrum. 

The method we have selected employs the discrete form of 
the Itakura-Saito distance measure. The reasons for this choice 
and the details of this modeling technique are presented below. 
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111. DISCRETE ALL-POLE MODELING 
In this section, we introduce a new method for all-pole en- 

velope estimation of discrete spectra, which we call discrete all- 
pole (DAP) modeling. We present the error criterion used in the 
estimation and derive its minimization conditions. We then de- 
rive an expression for the minimum error and show that there 
is a unique model spectrum that achieves it. 

A.  Properties of the Error Measure 

The Itakura-Saito (I-S) error measure was defined originally 
for continuous spectra [6], [7]. However, it can be adapted to 
the discrete case as follows: 

where P ( w , )  is the given discrete spectrum defined at N fre- 
quency points a, E Q, and P ( w , )  is the all-pole model spec- 
trum, defined in (2), evaluated at the same frequencies. This 
error measure is always nonnegative and is equal to zero only 
when P(w,) = P(w,)  for all w, E Q (i.e., P(w,) = P ( w , )  
gives a minimum for E,, but, as shown in the previous section, 
not necessarily for E L p ) .  

The continuous form of this error measure was originally pre- 
sented as part of a maximum likelihood approach to linear pre- 
diction and was shown to produce the same result as LP for 
continuous spectra. Later, the discrete version shown in (14) 
was derived by McAulay for the maximum likelihood spectral 
modeling of periodic speech signals with Gaussian statistics 

A spectral flatness interpretation of this discrete error mea- 
sure makes it a very reasonable choice for the problem of fitting 
an envelope to a set of discrete spectral values. It can be shown 
that minimizing the error in (14) is equivalent to maximizing 

~ 4 1 .  

the spectral flatness of the error spectrum P ( w , ) / p ( w , ) ,  where 
the spectral flatness is defined as the geometric mean of the 
spectral samples divided by their arithmetic mean. The proof of 
this property parallels the one for the continuous case given in 
[ 131. The major consequence of this property is that our optimal 
model is the one which makes the residual (error) spectrum as 
flat as possible. 

It has been shown that, for small values of EIS, the I-S error 
approximates the mean-squared distance between the log spec- 
tra [6]. Based on this property, we shall define 

EdB = 6.142 (15) 

for small EIS. 

In this paper, we shall use EdB when comparing error values 
since it provides an approximate estimate of the spectral error 
in decibels. 

It is important to note that, for the continuous case of the 
Itakura-Saito measure, the optimal all-pole model is the same 
as the one produced by LP. Therefore, by using this error mea- 
sure, we do not sacrifice any of the advantages or performance 
of LP in unvoiced segments of speech. 

B. Error Minimization 

measure in (14) with P ( o )  expressed as 
For pedagogical reasons, we shall first minimize the error 

k = O  

where { d k }  can be shown to be equal to 
P 

do = c a: 
k = O  

P-' 

di = 2 c a k a k + i r  1 I i 5 p .  (19) 
k = O  

Note that d ,  is twice the autocorrelation of { a k }  for 1 I i 5 
p ,  and do is equal to the zero-lag autocorrelation. We then set 
aE, , /ad i  = 0 for i = 0, * - , p .  The result can be shown to 
yield a set of correlation matching conditions, given by 

k ( i )  = R ( i ) ,  0 I i 5 p (20) 

where R ( i  ) is the autocorrelation corresponding to the given 
discrete spectrum defined in (5) and R ( i  ) is the autocorrelation 
corresponding to the all-pole model sampled at the same dis- 
crete frequencies as the given spectrum 

. N  

Equation (20) looks deceptively similar to the usual LP au- 
tocorrelation matching condition in (6). The major difference, 
however, is that in LP, RLpJi ) is the autocorrelation of the con- 
tinuous all-pole spectrum P( a), while here, R ( i  ) in (21) is the 
autocorrelation of a discrete sampling of the all-pole spectrum. 
From (20), we see that DAP requires matching the given aliased 
autocorrelation to the autocorrelation of the all-pole model 
aliased in the same manner. It is this improved correlation 
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matching condition, which incorporates the autocorrelation al- 
iasing, that makes DAP better suited than LP for analyzing 
voiced segments of speech, and discrete spectra in general. 

While the matching condition (20) provides us with insight 
into the solution of the modeling problem, it does not give us a 
way of computing the parameters of the optimal all-pole model. 
The all-pole model is obtained by using the definition of P (  CO) 
in (2) and setting aE, , /aa ,  = 0, i = 0,  * . . , p. This yields 
the following set of equations relating the predictor coefficients 
{ ak } to the autocorrelations of the given discrete spectrum and 
the sampled all-pole model 

P 

2 c u k [ R ( i  - k )  - k ( i  - k ) ]  = 0,  0 5 i 5 p. (22) 
k = O  

The conditions in (22) can be expressed in matrix notation as 

2(R - h ) a  = 0 (23) 

Ra = Ra (24) 

or 

whey U is the column vector of predictor coeficients, and R 
and R are symmetric Toeplitz matrices with elemfnts R (  i - j ) 
and R (  i - j ), 0 5 i ,  j 5 p, respectively. Since R is a function 
of a, (23) constitutes a set of p + 1 nonlinear equations in p f 
1 unknowns. Before we present a solution to these equations, 
we derive the minimum error. 

C. Minimum Error 

The minimum error is obtained by substituting the condition 
for minimization (24) in (14). We begin by simplifying the first 
term in the error measure (14): 

P P  
- c - -  - C a,u,R(k - j )  N m = l  P(w,) , = o  j = o  

= aTRa 

= a’Ra. 

We obtain (27) by substituting (24) into (26). But 

1 P ( m m )  - 
P P  

a’Ra = c c u,ujR(k - j )  = - c - - 
k = O  j = O  Nm=l P(w,) 

Therefore, at the minimum, we have 

Consequently, from (14) we have 

L m =  I J 

L _I 

We conclude from (29) and (30) that, at, the minimum, the en- 
ergy in the residual spectrum P (  w,)/P( CO,) is automatically 
normalized to 1 and the minimum error is equal to the logarithm 
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of the ratio of the geometric means of the model spectrum and 
the given spectrum. Both these properties have their equivalent 
in continuous spectrum LP [ 111, Based on the similarities be- 
tween the two methods (DAP and LP) and the‘fact that DAP 
reduces to LP for the continuous spectrum case while LP does 
not reduce to DAP for the discrete spectrum case, we conclude 
that LP is just a special case of DAP modeling where the num- 
ber of spectral points N goes to infinity. 

D. The Solution and its Uniqueness 
We now focus on the solution of the minimization conditions 

in (23). These equations allow one of two possible solutions: 
1) A “matching” solution in which R = R and the model 

satisfies the conditions in (20). 
2) A “singular” solution in which # R, and therefore, 

the predictor vector a will be an eigenvector of the difference 
matrix ( R  - R) corresponding to an eigenvalue equal to 0. 
(Note that the trivial solution a, = 0 is not possible since it 
produces unbounded values for R. ) 

Consequently, the optimal all-pole model will belong to one 
of these two classes of solutions. It will either have an aliased 
autocorrelation equal to that of the given discrete signal (match- 
ing solution), or it will not (singular solution). In Appendix A, 
we show that the error function is convex and that the optimal 
all-pole model, independent of which class of solutions it be- 
longs to, will be unique under some mild conditions on the 
number of spectral points N .  We also show that if the optimal 
model is the singular solution (i.e., it does not satisfy the 
matching conditions in (20)), it will have some roots on the unit 
circle. This statement implies that there are cases where the 
given autocorrelation R(i ) cannot be generated (matched) using 
a sampled all-pole spectrum, and consequently, the optimal all- 
pole model will be unstable. It is important to point out that 
these cases rarely occur for real signals and, when they do oc- 
cur, there are remedies. Below, we will present some examples 
of the two types of solutions for all-pole models of orders 1 and 
2.  

E. Examples 
In the examples below, the given autocorrelations are as- 

sumed to correspond to harmonic spectra (i.e., the frequency 
points are equidistant). This simplifying assumption reduces the 
mathematical complexity of the derivations without affecting 
any of the conclusions. The results can be generalized to arbi- 
trary discrete spectra. In these examples, we show that the range 
of autocorrelations generated by periodically exciting an all-pole 
filter is smaller than the one spanned by autocorrelations cor- 
responding to the given general discrete spectra. (In contrast, 
in the continuous case, every given autocorrelation sequence of 
length p + 1 can be generated with an all-pole of order p) .  

1) One-Pole Models: It can be shown [2] that the normal- 
ized first autocorrelation lag R (  1) of an arbitrary harmonic 
spectrum with N spectral lines has the range 

s(N - 1 )  5 R ( l )  5 1 forNodd (31)  
cos ~ 

N 

- 1  5 R ( l )  5 1 forNeven. (32) 

However, as shown earlier in (13),  for a single-pole model with 
a pole at z = p ,  sampled at N harmonic frequency points, the 
normalized first autocorrelation lag R ( 1 ) equals ( p  - I + p )  / 
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(1 + p N ) .  k (  1)  has the range 

(33) 

-1 5 k(1) 5 1 forNeven. (34) 

2 
N 

-1 + - 5 k ( l )  5 1 forNodd 

We note from (32) and (34) that, for N even, all possible values 
of R(  1)  can be generated (matched) using a one-pole filter. 
Therefore, for N even, we will always have a matching solu- 
tion. However, if N is odd, there may be cases where we may 
not be able to find an all-pole that satisfies the correlation 
matching condition (20). For example, for N = 7, we see from 
(31) that for an arbitrary spectrum we must have R(  1 )  > 
-0.901, while ffom (33) we see that for a sampled single-pole 
model we haveR( 1)  > -0.714. Therefore, any value o f R (  1 )  
that is in the range -0.901 < R ( l )  < -0.714 cannot be 
matched by a sampled one-pole model. In this range, the opti- 
mal all-pole will have a pole at z = - 1 and will be unstable. 

2 )  Two-Pole Models: We now give an example of the pos- 
sible solutions to (22) for second-order filters. It can be shown 
[2] that for the first two normalized autocorrelation lags R ( 1 ), 
R(2)  corresponding to an N-point harmonic spectrum are 
bounded by a polygon with (N/2 )  + 1 sides for N even and 
( N  + 1)/2 sides for N odd. The vertices of the polygon lie on 
the parabola enclosing the autocorrelations corresponding to ar- 
bitrary continuous positive-definite spectra. Each vertex corre- 
sponds to a discrete spectrum consisting of a nonzero spectral 
value at only one of the harmonic frequencies. An example of 
these regions is given in Fig. 3(a) for N = 11. The dashed 
polygon bounds the region of autocorrelations corresponding to 
arbitrary 1 1-point harmonic spectra. The solid curve inside the 
polygon bounds the autocorrelations generated by a 2-pole filter 
sampled at the same 11 harmonic points. If the given autocor- 
relations lie within this nonconvex region, they can be matched 
using a 2-pole filter and we will have the matching solution. 
However, if the given autocorrelations lie between this noncon- 
vex region and the polygon, they cannot be matched using a 
2-pole filter and we will have the singular solution. In this case, 
as mentioned earlier, the optimal all-pole filter will have roots 
on the unit circle. Fig. 3(b) shows the same regions for N = 
10. In general, as N + CO, the number of vertices of the polygon 
increases until the polygon coincides with the parabola. Also, 
the region of all-pole generated autocorrelations will coincide 
with the parabola and consequently, we will always have the 
matching solution. 

In summary, the optimal all-pole model which satisfies (22) 
may or may not. satisfy the conditions in (20). If it does, we will 
have the autocorrelation matching solution. If the optimal all- 
pole model does not satisfy (20), we will have the singular so- 
lution and the optimal model will be unstable. It is necessary to 
emphasize that the optimal all-pole model in both types of so- 
lutions minimizes the spectral distance measure and is unique. 

Iv. ALGORITHM FOR DISCRETE ALL-POLE MODELING 

In this section, we present a simple iterative algorithm that 
solves the set of nonlinear equations shown in (22). We then 
apply the algorithm to some simple envelope estimation prob- 
lems to examine its accuracy and convergence behavior. We 
also demonstrate that this algorithm will always converge to the 
optimal solution and we present possible modifications for im- 
proving its speed of convergence. 

_ _ _ - - -  L F  
T 

c- 

U P o s i t i v a  Definite 

(b) 

Fig. 3 .  (a) Autocorrelation boundaries for N = 1 1 .  The parabola shows 
the boundary for the autocorrelations R (  1 ), R (  2 )  of positive-definite con- 
tinuous spectra. The dashed polygon is the boundary for the autocorrela- 
tions of general harmonic spectra with N = 11. The nonconvex curve inside 
the polygon is the boundary for the autocorrelations of all-pole harmonic 
spectra with N = 11 and p = 2. (b) Autocorrelation boundaries for N = 
IO.  The parabola shows the boundary for the autocorrelations R (  1 ), R ( 2 )  
of positive-definite continuous spectra. The dashed polygon is the bound- 
ary for the autocorrelations of general harmonic spectra with N = 10. The 
nonconvex curve inside the polygon is the boundary for the autocorrela- 
tions of all-pole harmonic spectra with N = 10 and p = 2. 

A.  Sirnplijication 

use the following property of sampled all-pole filters: 
To simplify the solution of the nonlinear problem in (22), we 

P 

C akk( i  - k )  = k ( - i ) ,  for all i (35) 
k = O  

where h^( - i  ) is the (time-reversed) impulse response of the dis- 
crete frequency sampled all-pole model, given by 

To prove this property, we start with the identity 

(37) &(U,) A(Um) = 1. 
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Multiplying the H*(a,), and substituting (2), we get 

p(w,) * A ( w , )  = f i*(w,).  

C ukP(um) e-jwfnk = A*(o,). 

(38) 

By expanding A ( a,), we have 
P 

(39) 
k = O  

Multiplying both sides by eJwmr, averaging over U ,  E a, and 
using the definition of 8(  i ) in (21), we obtain 

D . N  

for all i .  

By substituting the all-pole property (35) into the minimiza- 
tion condition (22), we obtain the following set of equations 
relating the all-pole predictor coefficients to the given autocor- 
relation sequence: 

P c U $ ( i  - k )  = &( - j ) ,  0 I i 5 p .  (41) 
k = O  

The equations in (41) are written in vector form as 

Ra = h (42 1 
where h is a column vector with elements 6( - i  ), 0 s i s p .  
For the continuous spectrum case, we have &( i ) = 0 for i < 
0 (or h( - i  ) = 0 for i > 0) and this set of equations reduces 
to that of-regular linear prediction in (3) and (4). In fact, LP 
assumes h ( i  ) = 0 for i < 0 for both discrete and continuous 
spectra. However, for the discrete spectrum case, h (  - i )  is 
nonzero in general. For the example in Fig. 1, h ( i  ) is shown 
for -37 s i r: 37 in Fig. l(e). It is clear that assuming h ( i  ) 
= 0 for i < 0 is a gross approximation which produces large 
errors in the LP envelope estimates. In DAP modeling, we are 
after the exact solution to the set of equations in (41). However, 
the set in (41) is nonlinear since h(  - i  ) depends on the values 
of the all-pole coefficients { uk }. This nonlinear set of equations 
can be solved iteratively using the algorithm presented below. 
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6) Solve (41) for the new estimate of { a k } .  

7) Evaluate E,,  using (2) and (14). 
8) If the reduction in EIS from previous iterations is greater 

than some threshold T, go to step 4; else continue. 
9) Normalize the coefficients to satisfy (29). 

10) stop. 
Computationally, the DAP algorithm is more intensive than 

LP. Each iteration of the above algorithm requires two real 
DFT's of size N and the solution of a set of p + 1 linear equa- 
tions. It is important to note that the autocorrelation matrix R 
in (41) is constant throughout the iterations, and therefore need 
only be inverted once. Also, R is Toeplitz symmetric, which 
allows the use of efficient algorithms in the solution of (41). 

C.  Examples 

To demonstrate that the DAP theory and the algorithm given 
above are basically sound, we applied the algorithm to the har- 
monic discrete spectrum in Fig. l(a) and the nonharmonic dis- 
crete spectrum in Fig. 2(a). As expected, in both cases DAP 
was able to recover the original all-pole filter, with the resulting 
spectrum in each case being almost identical to the original 
(solid) envelope shown in the figures. 

In Section V,  we present and discuss the results of applying 
DAP to real and synthetic speech. But first, we present the con- 
vergence properties of the DAP algorithm. 

D. Algorithm Convergence 

To examine the convergence characteristics of the DAP al- 
gorithm, we show in Fig. 4 plots of the spectral error EdB as a 
function of the iteration number for discrete spectra obtained 
from the 12-pole example of Fig. 1. The lower line shows the 
behavior of EdB for a spectral sampling of N = 60 while the 
upper curve corresponds to a sampling of N = 34. By compar- 
ing the two curves, we notice that the algorithm converges faster 
for a higher value of N ,  partly because the initial LP estimate 
is closer to the final DAP result. For smaller values of N close 
to 2p, as shown by the upper curve, we notice that the error 
decreases every two iterations instead of every iteration. The 
reason for this behavior will become evident when we analyze 
the convergence properties of the algorithm. 

While the algorithm is intuitive and straightforward and was 
derived without rigorous mathematics, we will show that it is 
fundamentally sound and its behavior is not at all surprising. 
We will use the vector notation introduced earlier to prove that 
the algorithm is equivalent to a well-known fast gradient tech- 
nique and suggest an improvement to the algorithm which in- 
creases convergence speed. 

The algorithm in Section IV-B can be given in vector notation 
as follows. Given an estimate a, of the vector a at iteration m, 
we compute the vector h,. Then, the new estimate a, + , is given 
from (42) as 

B. m e  Algorithm 

The algofithm used for determining the predictors ak is 
straightforward; it involves two steps repeated iteratively: 

Given an estimate of the predictor, evaluate &( - i  using 

Given the new estimate of &( 

The algorithm in detail is as follows. 

(36). 
), solve the now 

equations (41) for a new estimate of the predictors. 

1) Perform peak picking on the spectrum of the speech sig- 
nal. Obtain the locations w,, the magnitudes P(w,), and the 
number N of the peaks. (Note that the peak frequencies do not U,+, = ~ - I i i ,  = R-IR m a m. (43) 

With simple manipulation of the above equation, we obtain have to be intege; multiples of some fundamental pitch. How- 
ever, to minimize the number of spurious peaks, one could ap- 
ply quasi-harmonic constraints when dealing with voiced speech U,,, = U, - R - ~ ( R  - R,)u,. (44) 
t141.1 

from ( 5 ) .  

But we see from the derivation of (23) that 
2) Given w, and P( U,) for 1 I rn I N ,  compute R( i ) 

g, = 2(R - Rm)am (45 1 
3) Using ordinary linear prediction, find an initial estimate 

4) Compute A ( u , )  for 1 I m I N .  
is the gradient g at iteration m. Therefore, the update equation 
in (44) reduces to 

of ( a k } ,  0 I k I p .  

5) Evaluate h( - i ) ,  0 5 i I p ,  using (36). % + I  = a, - (2R)-'g",. (46) 
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040 ' 0  I? lR  

Fig. 4. Spectral error E,,, as a function of the iteration number for the DAP 
modeling example in Fig. l(a) and for excitation periods N = 34 (top) and 
N = 60 (bottom). 

The update equation (46) is recognized as a special form of 
the classical quasi-Newton method [ 101 which in general is ex- 
pressed as 

a,,, = a, - as-lg, 

where S is the Hessian (matrix of second derivatives) of the cost 
function and a! is a scalar determining the length of the update 
vector S-lg,. We note that, in the case of the DAP algorithm, 
the 2R matrix is used as an estimate for the Hessian. This choice 
is appropriate since 2R is a good estimate of the Hessian for 
large N (it is exact for N --t 03 ) and it is positive definite, which 
is a requirement for the convergence of such algorithms. We 
also note that, for the DAP algorithm, the update scalar is al- 
ways set to l .  While this value is optimal for the quadratic case, 
it is suboptimal for nonquadratic problems such as this one. The 
use of a suboptimal value of a! is the reason why the error does 
not necessarily decrease every iteration. To improve the con- 
vergence speed, we incorporate an update scalar a! in our al- 
gorithm. The algorithm is then modified to 

U,+l = a, - Q!(2R)-lgm (47) 

= a,(l - a! )  + a!R-'h^,, 0 5 Q! I 1 .  (48) 

A proper choice of a! can guarantee a decrease in the error every 
iteration, which would provide for faster convergence. Fig. 5 
shows the convergence curves for the DAP algorithm for the 
same example in Fig. 4 with N = 34 and for a! = 0.1, 0.5, 1 .O. 
We note that, for Q! = 1 (the standard algorithm in (43)), we 
have slow convergence. Moreover, we do not have an error de- 
crease every iteration. On the other hand, for a! = 0.5, we have 
a fast convergence rate and an error decrease every iteration. 
The algorithm with a! = 0.: has a much slower convergence 
rate and the curve flattens before attaining the minimum error. 
This behavior is typical of gradient techniques where if the up- 
date parameter is larger than its optimal value, oscillations oc- 
cur and if it is lower than its optimal value, slow convergence 
occurs. In most experiments, we have found that cx in the range 
0.4 I a! I 0.8 was adequate and achieved good results in terms 
of convergence speed. 

V. EXPERIMENTAL RESULTS 
We now present the results of applying DAP modeling to 

short-term spectra obtained from synthetic speech and from real 
speech. 

a 
4 

:?U 

Fig. 5 .  E,, versus iteration for the DAP algorithm for the example in Fig. 
l(a) using various values of a with N = 34 andp = 12. 

A .  Synthetic Speech 

We applied DAP modeling to the estimation of formant fre- 
quencies of synthetic vowels. We synthesized one-second long 
segments of each of three vowels, led,  lit, and lul. Each vowel 
was synthesized by exciting a fixed 12-pole filter with known 
formant frequencies by a sequence of pulses with varying pitch. 
The pitch values within each vowel were changed continuously 
from 100 to 350 Hz, but never higher than the value of the first 
formant. We then estimated the spectral envelope of the syn- 
thetic speech for every frame of 20 ms (for a total of 50 frames 
per vowel) using LP and DAP modeling with p = 12 poles. 
From the envelope in each frame, we located the first three local 
maxima as estimates of the formant frequencies and computed 
the percent error ofieach estimate. The percent error was de- 
fined as I % I = ( I F  - { I / F )  x 100 where F is the known 
value of the formant and F is the estimate. The first row in Table 
1 shows the percent error for the LP formant estimates averaged 
over all 50 frames for each of the three formants of each vowel. 
The second row in the table shows the average percent error for 
the DAP estimates. (The third row will be described in Section 
VI). We note that DAP produced better estimates of all the for- 
mants for all three vowels. The improvement was the greatest 
for the first formant of each vowel and constituted a reduction 
of a factor of two to three in the percent error. Also, for each 
method we show the average value of E,, for each vowel. The 
decrease in EdB was on the order of 1 (dB) for all three vowels. 

It would be misleading to claim that DAP modeling will al- 
ways necessarily provide a better estimate of the vocal tract res- 
onances for real speech than other modeling techniques. This 
claim would be valid only if the vocal tract can be well modeled 
using an all-pole envelope which, as is well known is not al- 
ways the case. What DAP modeling always provides is an all- 
pole envelope that is on the average closer to the harmonic peaks 
than the LP envelope. 

B. Real Speech 

As an example of the performance of DAP modeling on real 
segments of speech, we show in Fig. 6(a) the spectrum of a 
20-ms frame of voiced speech and its line spectrum approxi- 
mation. We also show the LP and DAP 12-pole estimates of the 
spectral envelope. The LP estimate is shown as a dashed line 
while the DAP envelope is the solid line. We note that the DAP 
envelope generally fits closer to the harmonic peaks than the LP 
envelope. Also, the DAP formants are less biased toward the 
given spectral peaks than the LP formants. The difference be- 
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TABLE I 
DAP VERSUS LP IN THE ESTIMATION OF THE FORMANTS OF SYNTHETIC VOWELS 

/er/ til lul  

F1 F2 F3 F1 F2 F3 F1 F2 F3 
430 1100 1475 E,, 265 2296 3007 E,, 296 867 2240 Em 

6 .6  0.8 0.7 1 . 1  6.3 2 .3  1 .o 0.9 7.0 2.3 2.6 1 .o LPC 
DAP 
WDAP ' 1.8 1 . 1  0 .9  0.1 

1.8 1.0 0.9 0.2 3.0 0.1 0.2 0.3 2.4 0.8 0.2 0.2 
2.3 0 .2  0.7 0.1 2.2 0.8 0.3 0.1 

- A  I 

- 0  1 2  3 4 5 6 7 (1 9 10 
ITER 

(C) 

Fig. 6. (a) LP and DAP 12-pole estimates of the spectral envelope of 
voiced speech. The DAP envelope is the solid line and the LP envelope is 
the dashed line. Number of spectral points N = 40. (b) Spectral e m r  plot 
for the LP (dashed line) and DAP (solid line) estimates shown in Fig. 6(a). 
(c) Convergence behavior of the DAP algorithm for the spectrum shown in 
Fig. 6(a). 

tween how LP and DAP spectra match the spectral peaks can 
be seen by examining the spectral deviation plots in Fig. 6(b). 
This figure shows the spectral error P(o,)/~(w,) in decibels 
at the spectral peaks for the LP model (dashed lines) and the 
DAP model (solid lines). As expected, DAP modeling provides 
a better fit at most frequency points. The convergence behavior 
of the DAP algorithm for this spectrum is shown in Fig. 6(c). 
We note that the error EdB decreased from 2.2 for the LP esti- 
mate to 1.4 for the DAP estimate in four iterations and that the 
error decrease for subsequent iterations was very small. This 
convergence behavior, which is typical for real speech seg- 
ments, allows us to limit the algorithm to very few iterations. 
This makes DAP modeling an attractive procedure with some 
extra computational load but not a prohibitive one. Early stop- 
ping of the iterations also has an advantage in the case where 
the optimal solution is singular because the algorithm will not 
reach the unstable optimal all-pole model, but will still achieve 
an improved spectral fit and a decrease in error using the first 
few iterations. 

In order to compare the general behavior of DAP modeling 
with LP modeling for real speech, we present in Fig. 7 a scatter 
plot of E d ,  for the two methods when applied to the voiced 
segments of a sentence from a female speaker. We note that, as 
expected, EdB for the DAP estimate is always less than E d B  for 
the LP estimate. The decrease in for these segments ranged 
from 0.15 to 3.5, with an average of 0.65. 

Fig. 8 shows the spectrum of a 20-111s frame of unvoiced 
speech and the LP and DAP 12-pole estimates of the spectral 
envelope. The LP envelope is shown in dashed line while the 
DAP envelope is in solid line. We note that the DAP and LP 
envelopes provide similar fits to the spectrum. This conclusion 
becomes evident when we note that E, jB  decreased from 2.5 to 
2.4 in 10 iterations. 

This result is expected since unvoiced speech has a large 
number of spectral peaks and as shown earlier, DAP modeling 
reduces to LP for large N .  

VI. WEIGHTED DAP 

As mentioned earlier, the use of the Itakura-Saito error mea- 
sure allows us to weight the error as a function of frequency. 
Frequency-dependent weighting has been used in many appli- 
cations to obtain a better envelope fit in certain frequency re- 
gions relative to others. It has been shown that, in speech 
coding, a better fitting envelope at the lower harmonics can im- 
prove the quality of the synthetic speech [22]. It has also been 
shown that proper error weighting can improve the recognition 
performance of speech in noise [ZI]. In this section, we modify 
our DAP procedure to include a frequency-dependent weighting 
of the I-S error. We call this method weighed DAP, or WDAP. 
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Fig. 7 .  Scatterplot of E,, for LP and DAP for a female speaker. 

=. . U 1000.0  2000.0  :ooo.o :ooo.o EJUO.9 
w o  (HZ) 

Fig. 8. LP (dashed envelope) and DAP (solid envelope) 12-pole estimates 
of the spectral envelope of unvoiced speech. 

A.  Minimization of the Weighted Error Measure 

as 
The weighted error measure for the discrete case is expressed 

where W ( U , )  is a positive weighting function defined only at 
the frequencies of interest U,,, E Q and normalized such that 

I N  
- c W ( U , )  = 1. (50 )  N m = 1  

For an all-pole model, the minimization of Ewls  with respect to 
the predictor coefficients yields the following conditions: 

P P 

k = O  k = O  
C akR,( i  - k )  - C akk,(i - k )  = 0, o 5 i 5 p 

(51) 

( 5 2 )  

(53) 

where 

l N  

I N  

R , ( i )  = - c W(o,)P(o,) cos ami, 
N m = l  

R , ( i )  = - N m = \  C ~ ( w , , ~ ) P ( w , )  cos w,i. 

Similar to DAP, the WDAP minimizaiton conditions admit two 
types of solutions: the autocorrelation matching solution in 
which R , ( i )  = R w ( i ) ,  0 5 i I p ,  or the singular solution 
where the autocorrelation matching is not possible and the op- 
timal all-pole model will have roots on the unit circle. 

Also similar to DAP, the minimization conditions (51) can 
be simplified using an identity for sampled all-pole filters, 
namely, 

P 

C akRw(i - k )  = & ( - i ) ,  for all i (54) 
k = O  

where h,( - i  ) is defined as 

( 5 5 )  

By substituting (54) into (51), we obtain a set of nonlinear equa- 
tions 

The set of equations in (56) is solved iteratively using a two- 
step procedure similar to the one presented earlier for the no- 
weighting case. These two steps, which are repeated until con- 
vergence, are 

Given an estimate of the predictor, evaluate k,( - i  ) using 

Given the new estimate of 6,( - i  ), solve the now "lin- 
ear" equations (56) for a new estimate of the predictors. 

The WDAP algorithm exhibits all the convergence properties 

(55) .  

mentioned earlier for the DAP algorithm. 

B. Results 

We applied WDAP to the estimation of formant frequencies 
of the same synthetic vowels described in Section V-A. The 
only difference in this experiment is that the spectral error is 
weighted using the function W (  U )  = [ 1 / 1 + ( U  / a c )  ] where 
the cutoff frequency U ,  corresponds to 800 Hz. This weighting 
function corresponds to a mel-scale based weighting. The third 
row in Table I shows the average percent error for WDAP es- 
timates for each of the formants for the three synthetic vowels. 
We note that WDAP modeling improves the estimates for for- 
mants whose values are lower than the cutoff frequency at the 
expense of the estimates for the formants that are higher than 
the cutoff frequencies. Estimates of the formants that are rela- 
tively near U ,  do not vary greatly when we use WDAP instead 
of DAP modeling. 

It is important to note that while a correlation matching so- 
lution may exist for a certain weighting function, it may not 
necessarily exist for another, even though the spectrum P ( U , )  

is the same in both cases. This point is illustrated in Fig. 9. 
Fig. 9(a) shows the admissible region of the normalized auto- 
correlation lags R,( 1 ) and &,( 2 )  that can be generated from 
a 2-pole model, excited with a pulse train with period N = 10 
and weighted with W (  U )  in Fig. 9(b). The admissible region in 
Fig. 9(a) is to be compared with that in Fig. 3(b) for the uniform 
weighting case. It is clear from the two figures that the admis- 
sible autocorrelations depend on the weighting functions: there- 
fore, the existence of correlation matching solutions will also 
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R(2) 

42 I 

(b) 

Fig. 9 .  (a) Normalized autocorrelation lags for two-pole filters weighted 
using weighting function W ( w )  in Fig. 9(b) and period N = 10. (b) 
Weighting function W (  w )  for Fig. 9(a). 

be weight dependent. Note that this change in the region of 
admissible autocorrelations with change in spectral weighting 
only occurs for the discrete spectral case. For continuous spec- 
tra, the region of admissible autocorrelations is always the whole 
positive definition region, with or without spectral weighting. 

VII. CONCLUSIONS 

In this paper, we introduced a new method for estimating the 
envelope of discrete spectra. By matching the appropriate au- 
tocorrelations, discrete all-pole (DAP) modeling is able to pro- 
duce better fitting envelopes to a set of spectral points than linear 
prediction. We also presented a simple iterative algorithm which 
we showed to be a fast gradient technique guaranteed to con- 
verge. The basic DAP method was extended to allow fre- 
quency-dependent weighting of the spectral error to improve the 
spectral fit in certain frequency regions of frequency at the ex- 
pense of the fit at other regions. The basic method can also be 
extended to allow pole-zero modeling of discrete spectra [2], 
[31. 

APPENDIX A 

In this Appendix, we shall prove the following properties of 
the error measure and the optimal all-pole model: 1 )  The all- 
pole model satisfying the minimization condition (22) is unique 
as long as the number of spectral points N exceeds a certain 

threshhold. 2) If the optimal all-pole model does not satisfy the 
autocorrelation matching condition in (20), it will have roots on 
the unit circle. 

Many of the arguments in this Appendix are based on the 
one-to-one correspondence between predictor sequences { ak 1 
with poles inside the unit circle and the positive-definite cor- 
relation sequence { d k }  defined in (18) and (19). From one se- 
quence, we can always compute the other. We start by showing 
that the minimum is unique with respect to the sequence { dk } . 
Note that we do not intend to compute the optimal set of { dk } . 
We are only exploiting the properties of the error function of 
the { dk } parameters to find its properties for the { uk 1 param- 
eters. We then show that, depending on whether the optimal set 
of correlation coefficients corresponds to a positive-definite 
spectrum or not, the optimal all-pole model will or will not sat- 
isfy the correlation matching condition (20). If the optimal all 
pole does not satisfy (20), we show it to have roots on the unit 
circle. 

1. Uniqueness with Respect to { dk } 
A sufficient condition for the minimum with respect to { dk 1 to 
be unique (i.e., for the local minimum to be global) and for EIS 
to be a convex function of dk is that the Hessian matrix S of 
second derivatives be positive definite or, equivalently, have 
the product x T S x  be positive for all vectors x # 0.  We adapt 
a proof presented by Preuss [ 181 for the continuous case to the 
discrete case. We first compute the matrix S with elements s,, 
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= d 2 E I s / a d j a d j ,  0 I i, j I p. Using the definition of p(o) 
in (17), one can show that 

a2EIS 1 
s.. = - = - C B 2 ( w , )  cos iw, cos jam (A.I) ‘’ adiadj N m =  I 

and 
P P  

. N  D D  
I 

= - c ~*(w,) ,2 ,k xjxi  cos jw,  cos iw,. 
N m = 1  j = o  r = O  

Since the summations over i and j are separable, we can write 

(‘4.3) 

For the Hessian to be positive definite, we need to have at least 
one term inside the summation be different from zero for all x 
# 0. In other words, we need 

I) 

C xi cos w,i # 0, 
i = O  

for x # 0 for at least one frequency point w, E 0. (A.4)  

This condition can be written in vector notation as 

Cx # 0, forx # 0 (A.5) 

where C is an N X ( p + 1 ) matrix with cos w, i being the entry 
of the mth row and the ith column. Since x # 0, the condition 
in (A.5) is satisfied if the matrix is of rank r >- p + 1. The rank 
or number of linearly independent rows of this matrix equals 
the number of distinct frequency points. It is important to note 
that w and -w  do not qualify as distinct frequencies since they 
produce identical rows in the matrix. Therefore, r >- p + 1 can 
be written as 

p + 1 5 No,u. 

where Nosu  is the number of frequency points in the range [0, 
XI. This inequality translates into the following conditions de- 
pending on what the set Q of discrete frequencies includes: 

N 
2 

N - 1  
P I -  2 

N 
2 

p I - i f O E Q a n d n E Q  (‘4.7) 

if either 0 E Q or ?r E Q (A.8) 

p s - - 1  otherwise. (A.9) 

It is these conditions that guarantee at least one of the terms in 
the summation in (A.3) to be different from zero, and therefore, 
the uniqueness condition to be satisfied. 

In conclusion, the error is convex in { d k }  and therefore the 
optimal set { d k }  is unique if the condition in (A.6) is satisfied. 

Note that (A.6) gives the minimum number of spectral points 
required for uniqueness for a given model order. 

The form of the optimal all-pole model will depend on 
whether the unique optimal value of { dk} occurs within the 
region corresponding to positive definite spectra or outside it. 
Below we consider both possibilities and derive the properties 
of the optimal all-pole predictors { a k }  based on those derived 
above for the set { d ,  } . 

2.  Autocorrelation Matching Solution 

If the optimal set of { dk 3 corresponds to a positive-definite 
spectrum, then the corresponding { a k }  sequence will exist and 
will have poles inside the unit circle. In this case, the optimal 
all-pole model will satisfy the matching condition (20) and the 
minimization condition (22) (hence the name matching solu- 
tion). Moreover, since the optimal sequence { dk } is unique (as 
shown by (A.3) above), the corresponding minimum-phase all- 
pole madel { a k }  will also be unique. In terms of tke matrix 
equation (23), this solution makes the matrix ( R  - R )  identi- 
cally zero and, therefore, (23) will be satisfied by the corre- 
sponding all-pole model. 

3. Singular Solution 

For the case where the unique local minimum in { dk } is non- 
positive-definite, there will be no local minimum among posi- 
tive definite spectral models. However, given the convexity of 
the error in { dk } , the optimal positive-definite { dk } sequence 
(the one which produces the smallest error among positive-def- 
inite spectral models) will be on the boundary of the positive- 
definite space. Therefore, the corresponding { a k }  will also be 
on the boundary of positive-definite space. In other words, the 
optimal all-pole will have roots on the unit circle. In terms 
of the matrix equation (23), the optimal all-pole model is the 
vector a that corresponds to the zero eigenvalue of the matrix 
(R - 8 ) .  
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