月4 2013 冬学期 [4830-1032]

第8回

音声音響信号処理

(独立成分分析によるブラインド信号分離)

亀岡弘和

東京大学大学院情報理工学系研究科 日本電信電話株式会社 NTTコミュニケーション科学基礎研究所

講義内容(キーワード)

- □信号処理、符号化、標準化の実用システム例の紹介
- □情報通信の基本(誤り検出、訂正符号、変調、IP)
- □符号化技術の基本(量子化、予測、変換、圧縮)
- □音声分析·合成·認識·強調、音楽信号処理
- □統計的信号処理の基礎(スペクトル、ガウス過程、最尤推定)
- □ガウス性確率変数の基本性質
- □時間周波数分析(短時間フーリエ変換、ウェーブレット変換)
- □ウィナーフィルタとカルマンフィルタ
- □音声生成過程のモデル(ソースフィルタ理論と藤崎モデル)
- □自己回帰モデルと線形予測分析
- □独立成分分析によるブラインド音源分離
- □非負値行列因子分解によるスペクトログラムの分解表現
- □スペクトル間擬距離
- □最適化アルゴリズム(EMアルゴリズム、補助関数法)

講義スケジュール

```
守谷先生担当
10/ 7
10/15 (火) 守谷先生担当
10/21 守谷先生担当
10/28 (休講)
11/5(火) 線形予測分析と自己回帰モデル
      時間周波数解析
11/11
      (休講)
11/18
      非負值行列因子分解
11/25
      統計的手法による音声強調
12/ 2
      独立成分分析によるブラインド信号分離
12/ 9
      吉井和佳氏(產業技術総合研究所)
12/16
1/15 (水)
      戸田智基准教授(奈良先端科学技術大学院大学)
1/20
```

成績評価

■レポート課題

- ■本講義に関連する論文を1つ選び、発表資料形式(パワーポイント等)にまとめて学期末に提出してください。提出先は最終講義にてお知らせします。
- ■「どの程度本質を理解しているか」「要点が分かりやすく記述 されているか」「なぜその論文を重要と考えたか」を評価の 規準にして採点します。
- ■毎回の講義後にその回の講義に関連する論文を1つ挙げる 予定です。それらの中から選んでも良いですし、自分で自由 に探してきてもOKです。

■講義の感想

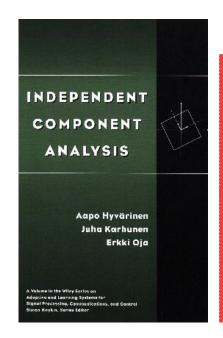
- ■レポートとともに講義に対する感想文も一緒に提出して下さい。
- ※講義資料は講義用ホームページにアップしていく予定。

本日の話題

- ■ブラインド音源分離
 - ■複数のマイクロホンで取得した観測信号から同時に鳴っている 複数の音源信号を分離獲得する技術
- ■独立成分分析
 - ■ブラインド音源分離を行うための統計的手法

■参考資料

- A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, John Wiley & Sons, 2001.
- ■村田昇, *入門 独立成分分析*, 東京電機大学出版局, 2004.
- ■澤田宏, "【チュートリアル】独立成分 分析入門~音の分離を題材として~," 部分空間法研究会2010, 2010年7月.



目次

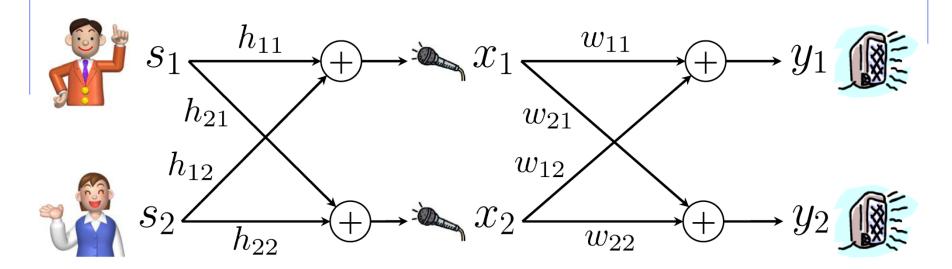
- ■独立成分分析について
 - ■定式化, 歴史, 応用
- ■信号の統計的性質
 - ■信号を混ぜる一中心極限定理
- ■独立成分分析のアルゴリズム
 - ■白色化+ FastICA
 - ■最尤推定法by Natural Gradient

目次

- ■独立成分分析について
 - ■定式化, 歴史, 応用
- ■信号の統計的性質
 - ■信号を混ぜる一中心極限定理
- ■独立成分分析のアルゴリズム
 - ■白色化+ FastICA
 - ■最尤推定法by Natural Gradient

ブラインド音源分離(BlindSourceSeparation)

- ■混ざり合った信号 x_1, x_2 から元の信号を取り出す ■どのように混ざったかに関する情報 \mathbf{H} は利用できない



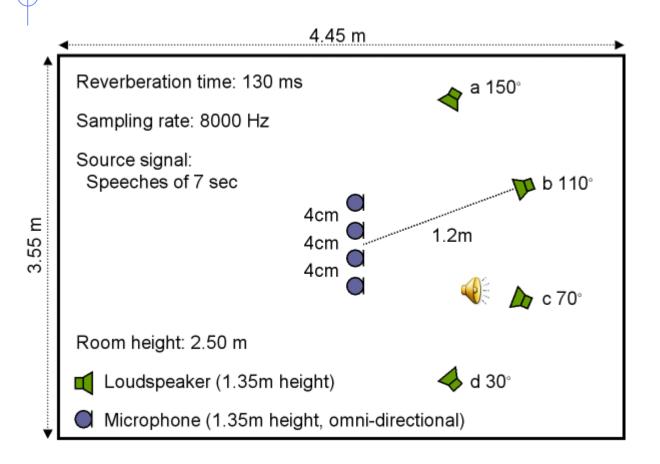
音の分離

- ■カクテルパーティー効果
 - ■人の聞き分け能力

■音声認識

- ■マイクロホンと口の間の距離が大きくなるにつれて 増大してくる妨害音を抑圧・除去
- ■音楽/楽器音分析
 - ■例)オーケストラの一つ一つの演奏をチェック

ブラインド音源分離の動作結果例



a 🍕 b 🍕	a 4 ∮ b 4 ∮ c 4 ∮	a ﴿ b ﴿ c ﴿ d ﴿
x1 📢 x2 🌓	x1 € x2 € x3 €	x1 🌓 x2 🌓 x3 🌓 x4 🌓
y1 📢 y2 🌓	y1 🥠 y2 🌓 y3 🌓	y1 🌓 y2 🌓 y3 🌓 y4 🌓

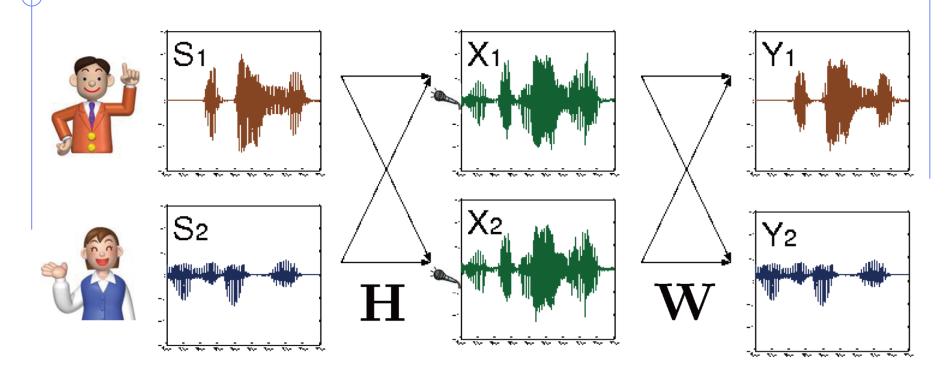
音の分離

- ■音のみを手がかりとして混ざった音を分離
 - ⇔ 視覚(カメラ)に関わる情報は利用できない
- ■何を手がかりにするか?
 - ■音源の性質
 - ◆音声の場合: 声質, 話し方の特徴, 次に来る言葉を予測
 - ◆楽器の場合: 音の高さ/特徴, リズム, 繰り返しパターン
 - ■空間情報
 - ◆音源の方向, 距離← 複数マイク(耳)

■分離方法

- ■線形フィルタ: ビームフォーマ, 独立成分分析
- ■非線形処理: 時間周波数マスキング

独立成分分析(<u>I</u>ndependent<u>C</u>omponent<u>A</u>nalysis)



元の信号は独立

依存関係がある

なるべく独立に

- 一方から他方が 推測できない
- 同じ成分が双方 に入っている
- 一方から他方が 推測できる

具体的には どうやる?

独立成分分析によるブラインド音源分離

lacksquare I 個の音源信号 s が混合行列 H により混ざり合い,J 個の観測信号 x が T 個得られたとする。

$$egin{aligned} oldsymbol{x}(t) &= oldsymbol{H} oldsymbol{s}(t) \ & t = 1, \dots, T \end{aligned} \hspace{1.5cm} oldsymbol{s} = egin{bmatrix} s_1 \ dots \ s_I \end{bmatrix} \hspace{0.5cm} oldsymbol{x} &= egin{bmatrix} x_1 \ dots \ x_I \end{bmatrix}$$

lacksquare 分離行列 $oldsymbol{W}$ により分離信号 $oldsymbol{y}$ を生成する。

$$oldsymbol{y}(t) = oldsymbol{W} oldsymbol{x}(t) \hspace{1cm} oldsymbol{y} = egin{bmatrix} y_1 \ dots \ y_I \end{bmatrix}$$

Wの計算は観測信号xのみから行う。 I個の分離信号 y_1, \ldots, y_I が互いに独立になるようにする。

独立成分分析 一背景

■歴史

- ■1980年代: フランスの研究者ら中心
 - ◆非線形無相関化, 高次統計量
- ■1990年代中盤から世界的な広がり
 - ◆理論的枠組の充実,効率的なアルゴリズム
- ■国際会議ICA: 1999年から1年毎に1回開催

■応用

- ■信号分離: 音,脳波,無線信号,など
 - ◆ブラインド音源分離(BlindSourceSeparation)
- ■特徴抽出: 自然画像, 音, など

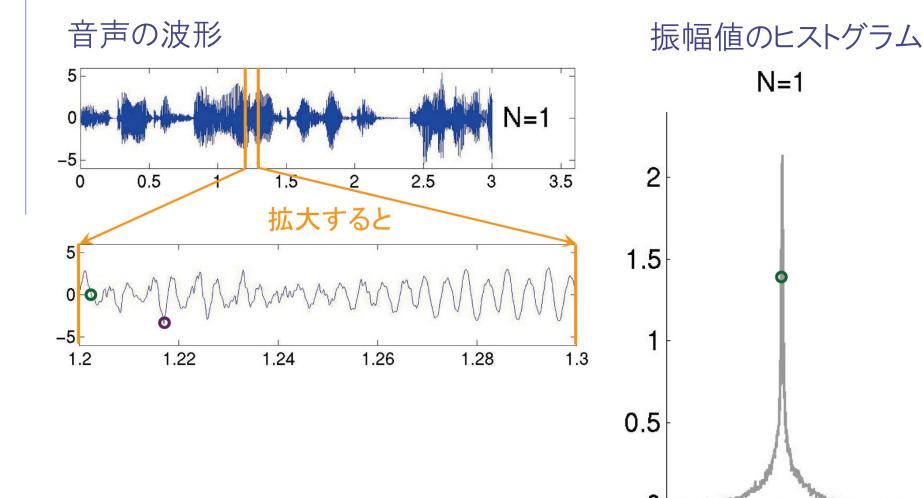
目次

- ■独立成分分析について
 - ■定式化, 歴史, 応用
- ■信号の統計的性質
 - ■信号を混ぜる一中心極限定理
- ■独立成分分析のアルゴリズム
 - ■白色化+ FastICA
 - ■最尤推定法by Natural Gradient

目次

- ■独立成分分析について
 - ■定式化, 歴史, 応用
- ■信号の統計的性質
 - ■信号を混ぜる一中心極限定理
- ■独立成分分析のアルゴリズム
 - ■白色化+ FastICA
 - ■最尤推定法by Natural Gradient

音の統計的性質

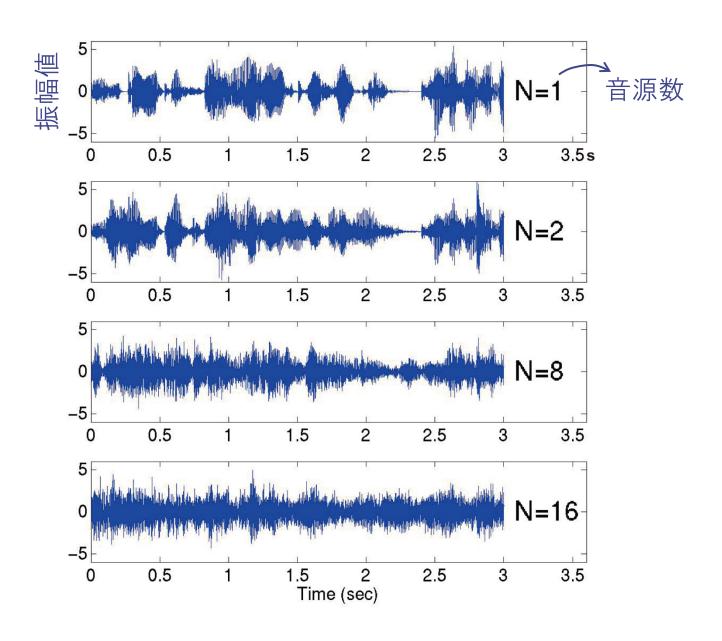


-5

5

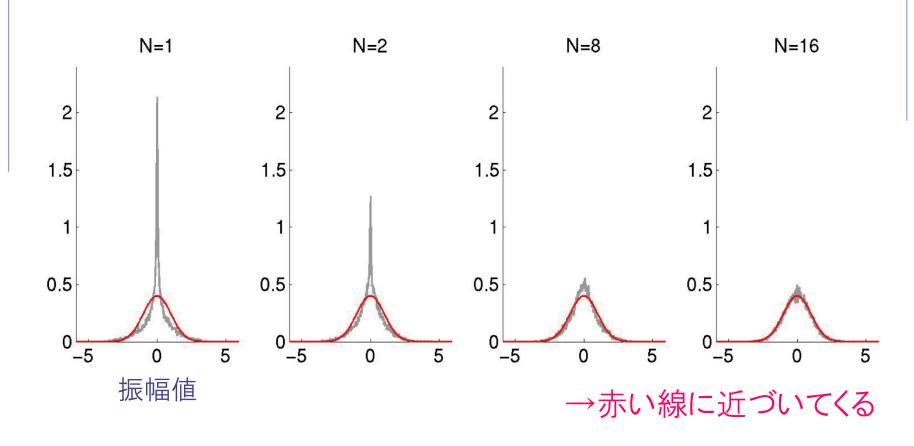
振幅值

音を混ぜてみる



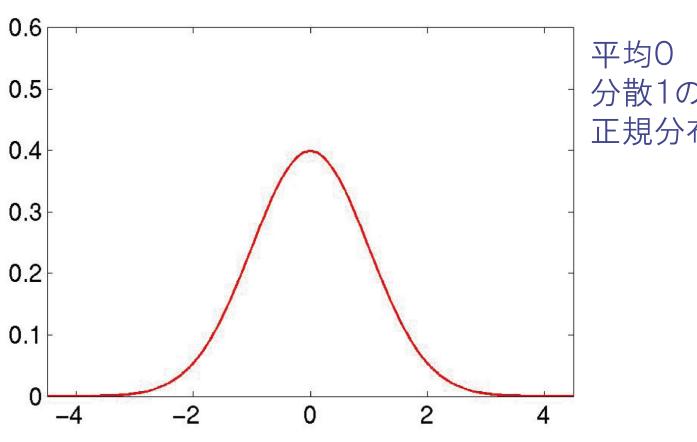
混ぜた音の統計的性質

■振幅値のヒストグラム



中心極限定理 (Central Limit Theorem)

■元々の信号がどのような統計的性質をもったものであれ、多くの 信号を足し合わせると、その振幅値の分布は正規分布に近づく。



分散1の 正規分布

中心極限定理 (Central Limit Theorem)

- 一確率変数 x_1, x_2, \ldots, x_N が独立に同一な確率密度関数 $p_x(x)$ に従うならば, $z = (x_1 + x_2 + \cdots + x_N)/\sqrt{N}$ の確率密度関数は $N \to \infty$ でガウス分布に近づく
- ■ただし、x の平均は0とする

中心極限定理の略証 (1/2)

- x の特性関数を $\Theta_x(ju)$ とする
- $y = x_1 + x_2 + \cdots + x_N$ の特性関数 $\Theta_y(ju)$ $\Theta_y(ju) = \Theta_x(ju)^N$ (ご重畳積分定理)
- $z=y/\sqrt{N}$ の確率密度関数 $p_z(z)$ $p_z(z)=\sqrt{N}p_y(\sqrt{N}z)$
- $z=y/\sqrt{N}$ の特性関数 $\Theta_z(ju)$

$$\Theta_z(ju)$$

$$= \int_{-\infty}^{\infty} p_z(z)e^{jzu}dz = \int_{-\infty}^{\infty} \sqrt{N}p_y(\sqrt{N}z)e^{jzu}dz$$

$$= \int_{-\infty}^{\infty} p_y(y)e^{jy(u/\sqrt{N})}dy = \Theta_y(ju/\sqrt{N}) = \Theta_x(ju/\sqrt{N})^N$$

中心極限定理の略証 (2/2)

 $lacksquare \log \Theta_x(ju)$ のマクローリン展開

$$\log \Theta_x(ju) = \sum_{n=0}^{\infty} \frac{k_n}{n!} \frac{(ju)^n}{n!}$$
n次キュムラント

 $lacksquare \log \Theta_z(ju)$ のマクローリン展開

- ■3次以上のキュムラントは $N \to \infty$ で0に収束
 - ⇒分布がガウス分布に収束

("."ガウス分布に従う確率変数の3次以上のキュムラントはすべて0)

正規分布(Gauss分布)

■確率密度関数

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- ■統計学における最も重要な分布の一つ
- ■さまざまな性質がある
 - ■平均 μ と分散 σ^2 によって確率密度関数が一意に決まる
 - ■最も「ランダム」な分布
 - ◆同じ分散をもつ分布の中でエントロピーが最大
 - ■中心極限定理

エントロピー(平均情報量)

■ある事象の情報量

$$I(x) = \log \frac{1}{p(x)} = -\log p(x)$$

めったに起こらないこと ほど情報量は大きい

エントロピー

$$H(x) = \mathbb{E}\{-\log p(x)\}\$$

- ■各事象の情報量の平均値
- ■事象のランダムさを表す指標
- ■正規分布の場合

$$H(x) = \log \sqrt{2\pi\sigma^2} + \frac{\mathbb{E}\{(x-\mu)^2\}}{2\sigma^2} = \frac{1}{2}\log 2\pi\sigma^2 + \frac{1}{2}$$

エントロピーが最大になる確率密度関数

■問題:

■ Maximize $H(x) = -\int p(x) \log p(x) dx$ with respect to p(x)

Subject to
$$\int p(x)dx = 1$$
, $\int xp(x)d = 0$, $\int x^2p(x)d = 1$

- ■ラグランジュ未定乗数法
 - ■ラグランジアンをpに関して偏微分して0と置く

$$\mathcal{L}[p] = -\int p(x) \log p(x) dx$$

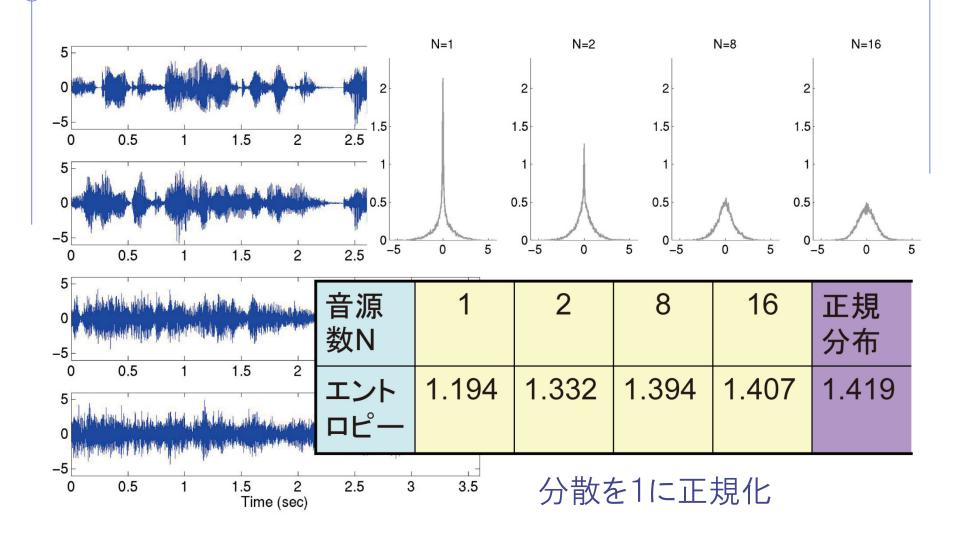
$$+ \lambda_0 \left(\int p(x) dx - 1 \right) + \lambda_1 \left(\int x p(x) dx \right) + \lambda_2 \left(\int x^2 p(x) dx - 1 \right)$$

$$\frac{\partial \mathcal{L}}{\partial p} = -1 - \log p(x) + \lambda_0 + \lambda_1 x + \lambda_2 x^2 = 0$$

$$\implies p(x) = \exp(1 - \lambda_0 - \lambda_1 x - \lambda_2 x^2)$$

たしかに正規分布型になっている!

混ぜた音のエントロピー



音源の統計的性質

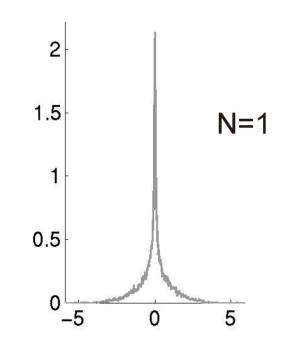
■我々の身の回りにある音(音声や楽音等) の波形は振幅値0の頻度が高い

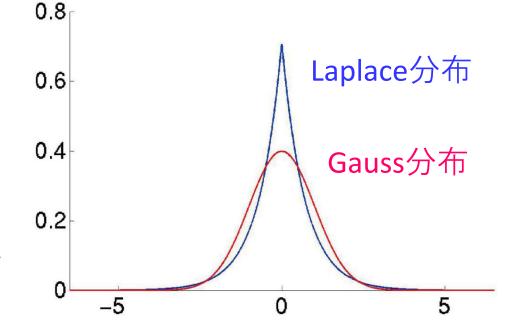
■Laplace分布によるモデル化

$$p(x) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right)$$

平均: $\mu = 0$

分散: $2b^2 = 1$





エントロピーの近似計算

■真の分布を良く近似する分布を用いてエントロピーを計算

$$H(x) = \mathbb{E}\{-\log p(x)\} \simeq -\frac{1}{T} \sum_{t=1}^{T} \log p(x(t))$$

音源数N	1	2	8	16	正規 分布
エントロピー	1.194	1.332	1.394	1.407	1.419
ラプラス分布による近似	1.286	1.356	1.420	1.457	1.474
ガウス分布に よる近似	1.419	1.419	1.419	1.419	1.419

良好→

分散正規化の ため変化無し

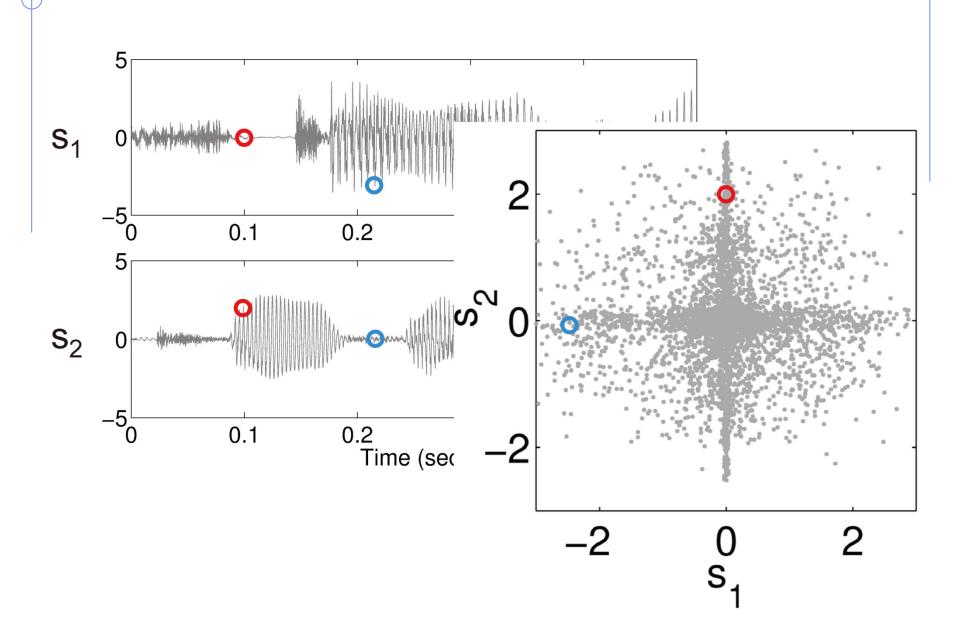
目次

- ■独立成分分析について
 - ■定式化, 歴史, 応用
- ■信号の統計的性質
 - ■信号を混ぜる一中心極限定理
- ■独立成分分析のアルゴリズム
 - ■白色化+ FastICA
 - ■最尤推定法by Natural Gradient

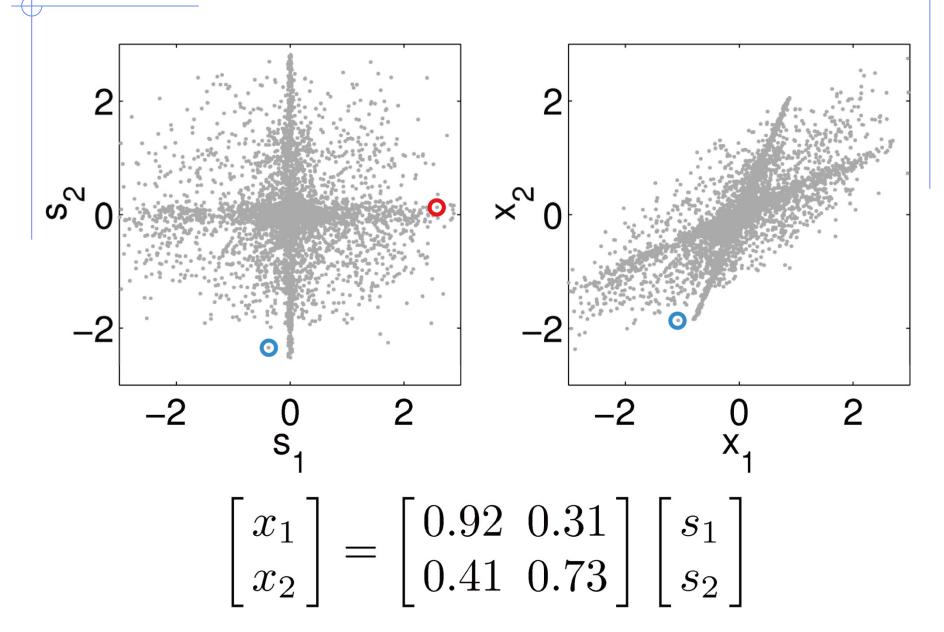
目次

- ■独立成分分析について
 - ■定式化,歷史,応用
- ■信号の統計的性質
 - ■信号を混ぜる一中心極限定理
- ■独立成分分析のアルゴリズム
 - ■白色化+ FastICA
 - ■最尤推定法by Natural Gradient

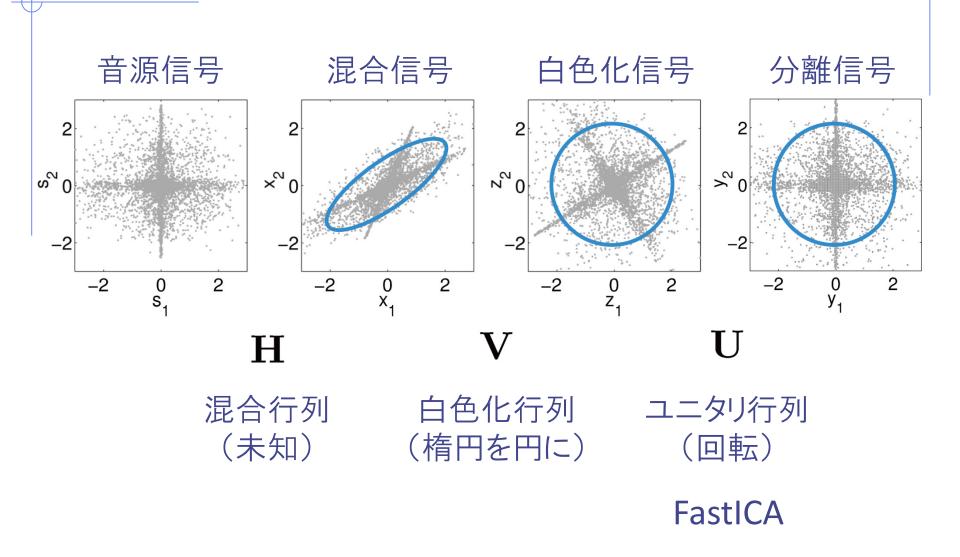
音源信号の散布図



音源信号と混合信号の散布図



白色化 + FastICA



相関と相関行列

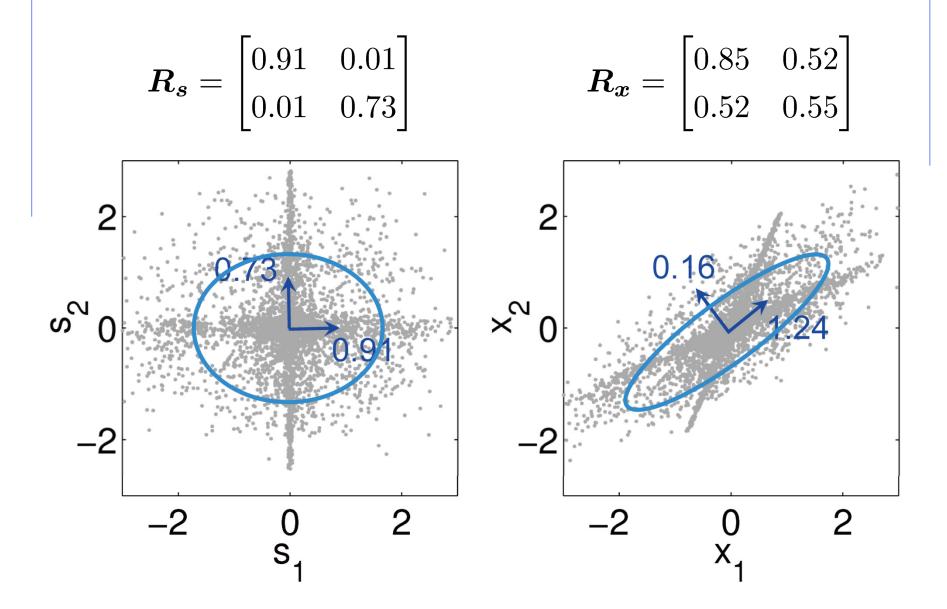
■相関

$$r_{i,j} = \mathbb{E}\{x_i x_j\} \simeq \frac{1}{T} \sum_{t=1}^{T} x_i(t) x_j(t)$$

■相関行列

$$m{R}_{m{x}} = \mathbb{E}\{m{x}m{x}^{\mathrm{T}}\} = egin{bmatrix} \mathbb{E}\{x_1x_1\} & \cdots & \mathbb{E}\{x_1x_J\} \ dots & \ddots & dots \ \mathbb{E}\{x_Jx_1\} & \cdots & \mathbb{E}\{x_Jx_J\} \end{bmatrix} \qquad m{x} = egin{bmatrix} x_1 \ dots \ x_J \end{bmatrix}$$

相関行列の固有ベクトルと固有値

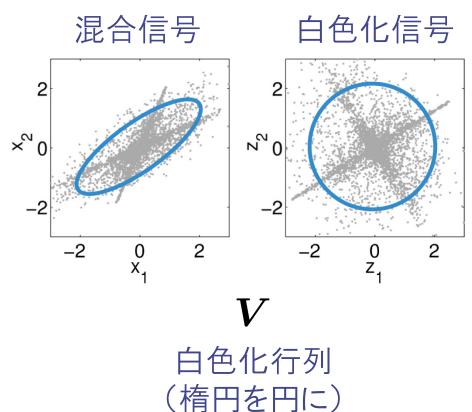


白色化

■相関行列が単位行列になる ように x(t) を変換

$$m{z}(t) = m{V} m{x}(t)$$
 $m{R}_{m{z}} = egin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- ■無相関化 $\mathbb{E}\{z_i z_j\} = 0$
- ■分散の正規化 $\mathbb{E}\{z_iz_i\}=1$



白色化行列の求め方

- lacksquare z = Vx により $R_z = I$ となる白色化行列 V を求めたい
 - z の相関行列を計算してみると...

$$oldsymbol{R_z} = \mathbb{E}\{oldsymbol{z}oldsymbol{z}^{ ext{T}}\} = \mathbb{E}\{oldsymbol{V}oldsymbol{x}oldsymbol{x}^{ ext{T}}oldsymbol{V}^{ ext{T}}\} = oldsymbol{V}oldsymbol{R_x}oldsymbol{V}^{ ext{T}}$$

x を固有値分解してみると...

$$oldsymbol{R_x} = oldsymbol{E}oldsymbol{D}oldsymbol{E}^{ ext{T}}$$

相関行列の固有値分解

$$m{R} = m{E}m{D}m{E}^{\mathrm{T}}$$
 $m{R}m{e}_i = \lambda_im{e}_i$ $m{D} = \mathrm{diag}(\lambda_1,\ldots,\lambda_J)$ $m{E} = [m{e}_1\cdotsm{e}_J]$: $m{E}^{\mathrm{T}}m{E} = m{I}$ を満たす 正規直交基底行列

 $\mathbf{R}_{z} = V R_{x} V^{\mathrm{T}}$ を単位行列にしたいわけなので $V = D^{-1/2} E^{\mathrm{T}}$

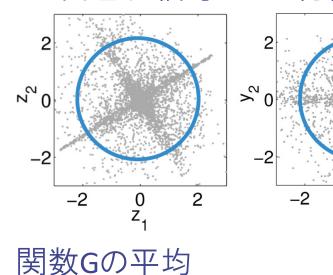
ユニタリ変換(回転)

■相関行列が単位行列になる ように *z*(t) を変換

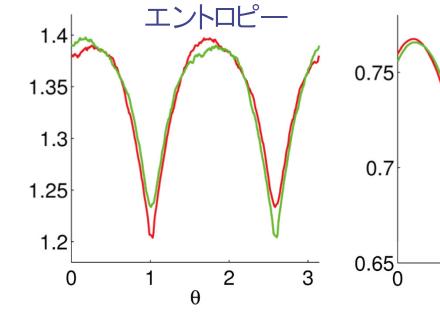
$$\boldsymbol{y}(t) = \boldsymbol{U}\boldsymbol{z}(t)$$

$$m{U} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

白色化信号



3



$$G(y_i) = -\log p(y_i)$$
$$p(y_i) \propto \exp(-|y_i|)$$

分離信号

Laplace分布による 情報量の近似

FastICAアルゴリズム

- \blacksquare 非線形関数 $G(y_i) = -\log p(y_i)$ の平均を最小化
 - ullet 求めたいのは $oldsymbol{U} = [oldsymbol{u}_1 \cdots oldsymbol{u}_i]^{\mathrm{T}}$
 - ■解空間をユニタリ行列に限定

各 i について収束するまで以下を繰り返す

$$y_i \leftarrow oldsymbol{u}_i^{\mathrm{T}} oldsymbol{z}$$
 分離信号の計算 $oldsymbol{u}_i \leftarrow \mathbb{E}\{G''(y_i)\}oldsymbol{u}_i - \mathbb{E}\{G'(y_i)oldsymbol{z}\}$ Newton法による降下 $oldsymbol{u}_i \leftarrow oldsymbol{u}_i - \sum_{k=1}^{i-1} (oldsymbol{u}_k^{\mathrm{T}} oldsymbol{u}_i)oldsymbol{u}_k$ Gram-Schmidtの直交化 $oldsymbol{u}_i \leftarrow rac{oldsymbol{u}_i}{\|oldsymbol{u}_i\|_2}$ ノルムの正規化

非線形関数Gについて

- ■FastICAでは一階微分と二階微分が必要 (Newton法を使うため)
- ■Laplace分布を用いて定義したGは不連続のため不都合

$$G(y) = |y|$$
 →微分できない

■代わりに微分可能な近似関数を使用することが多い

$$G(y) = \sqrt{y^2 + \alpha}$$
 $\rightarrow \alpha = 0$ で|y|となる
$$G'(y) = \frac{y}{\sqrt{y^2 + \alpha}}$$

$$G''(y) = \frac{1}{\sqrt{y^2 + \alpha}} \left(1 - \frac{y^2}{y^2 + \alpha}\right)$$

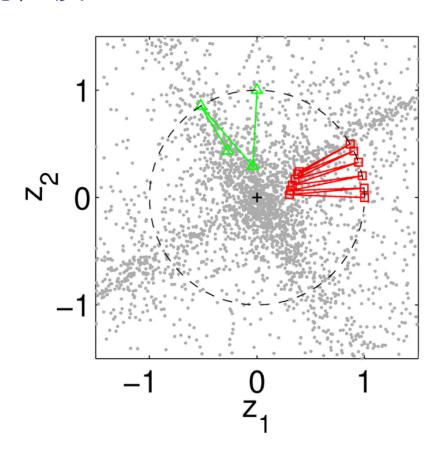
FastICAアルゴリズムによる推定の様子

■赤(□)

- $\mathbf{u}_1 = [1 \ 0]^{\mathrm{T}}$ を初期値に設定
- Newton法による更新: 原点に向かっている
- ■ノルム1に正規化:単位円上に引き戻されている
- ■5回の繰り返しで良好な解へ

■緑(△)

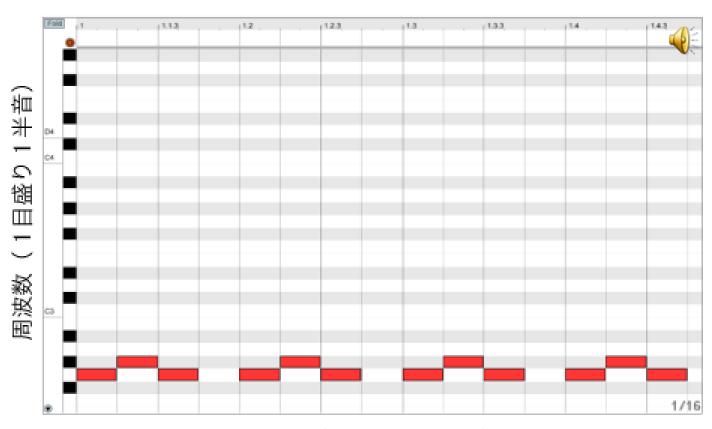
- $\mathbf{u}_2 = [0 \ 1]^{\mathrm{T}}$ を初期値に設定
- ■直交化により、1回だけで解 に到達



白色化+FastICAのまとめ

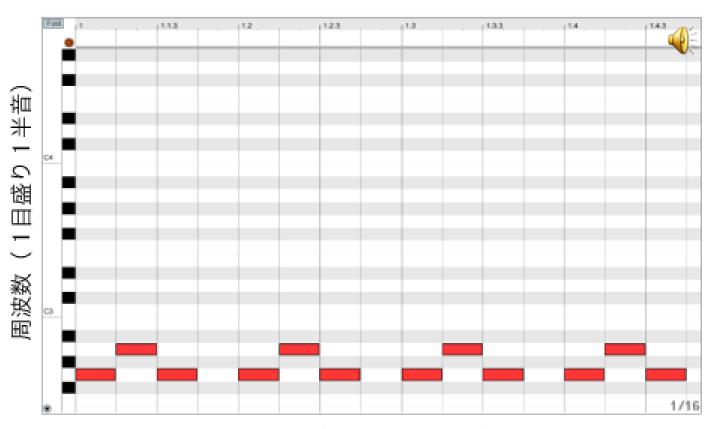
- ■手順
 - ■観測信号を白色化(観測信号の相関行列の固有値分解) z(t) = Vx(t)
 - $oldsymbol{u}$ ユニタリ行列を射影勾配法(Newton法+解空間への射影) $oldsymbol{y}(t) = oldsymbol{U} oldsymbol{z}(t)$
- $oldsymbol{w}$ 求めたかったのは分離行列: $oldsymbol{y}(t) = oldsymbol{W} oldsymbol{x}(t)$ (限定された形)

周波数差:1半音



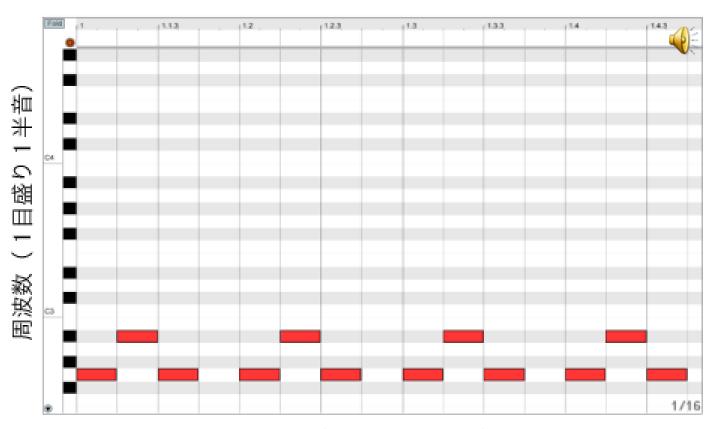
時間(1目盛り0.12秒)

周波数差:2半音



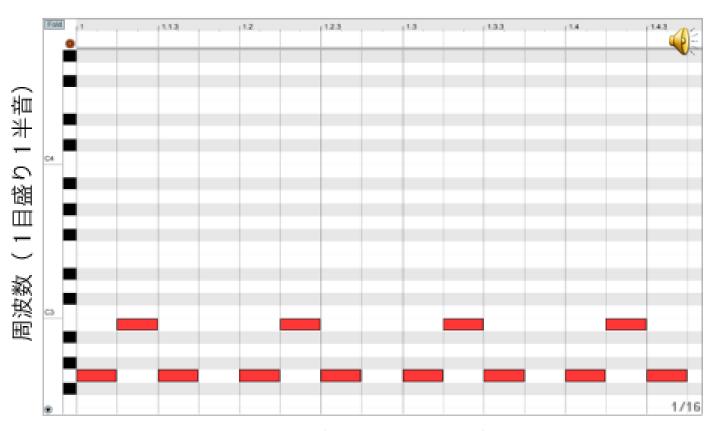
時間(1目盛り0.12秒)

周波数差:3半音



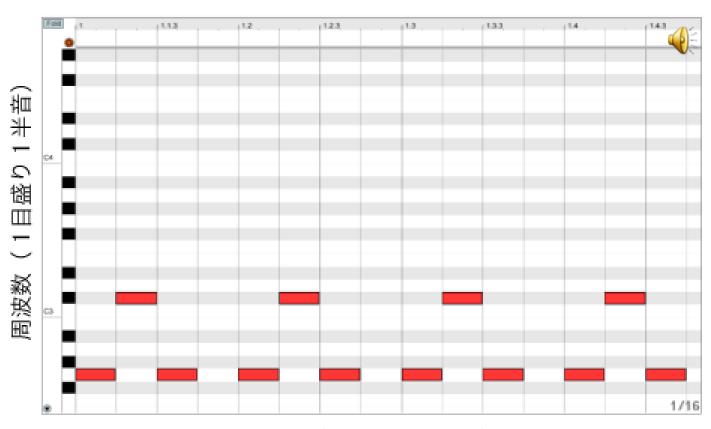
時間(1目盛り0.12秒)

周波数差: 4半音



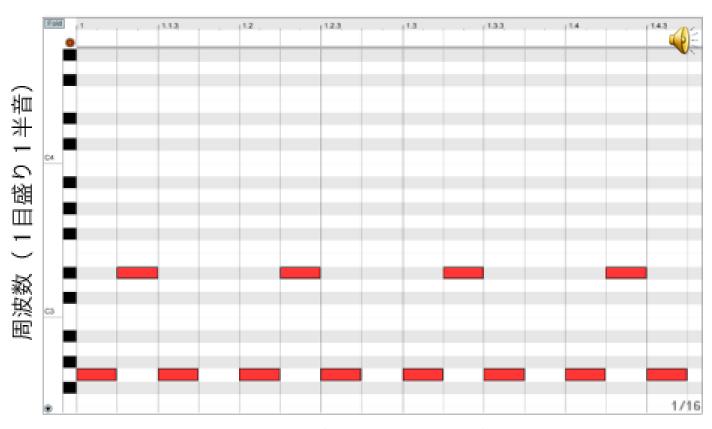
時間(1目盛り0.12秒)

周波数差:6半音



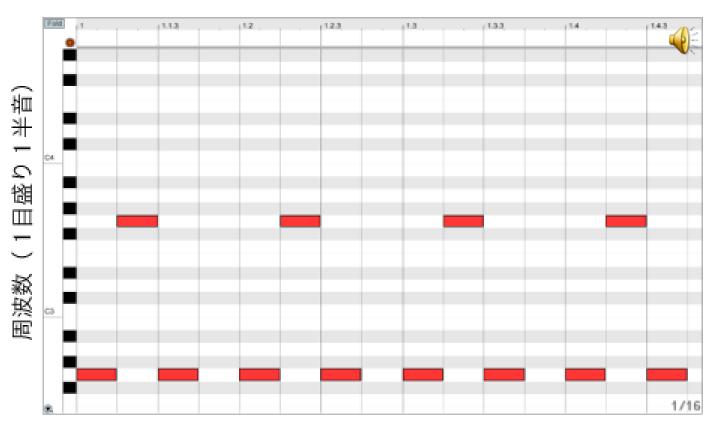
時間(1目盛り0.12秒)

周波数差:8半音



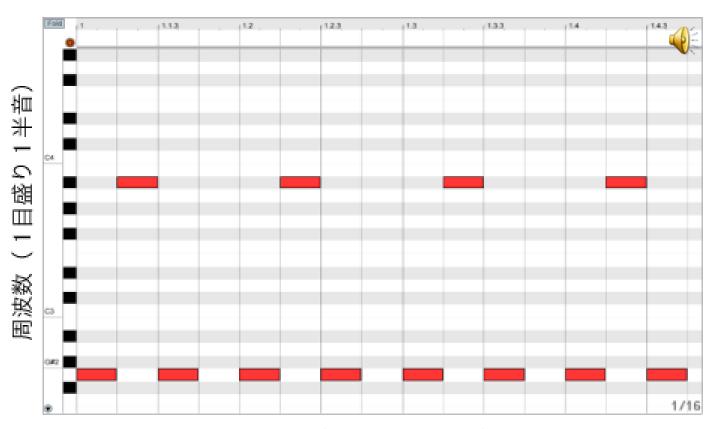
時間(1目盛り0.12秒)

周波数差:12半音



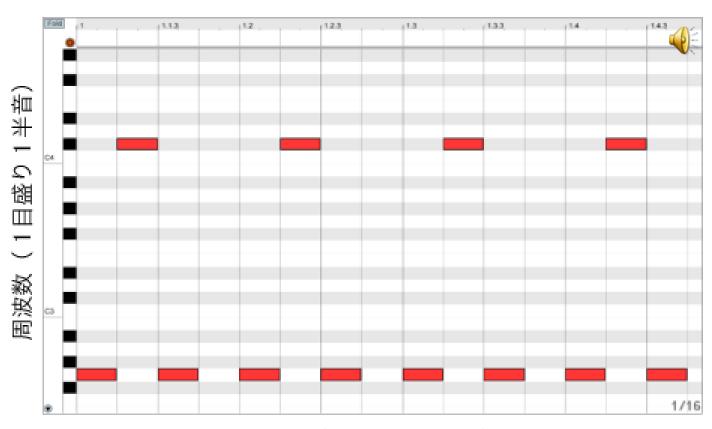
時間(1目盛り0.12秒)

周波数差:15半音



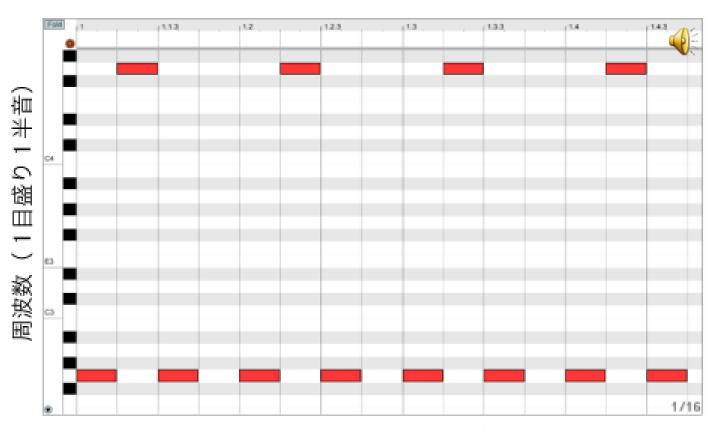
時間(1目盛り0.12秒)

周波数差:18半音

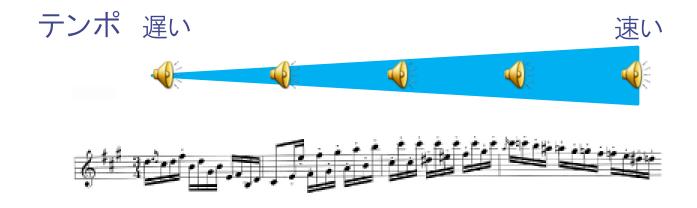


時間(1目盛り0.12秒)

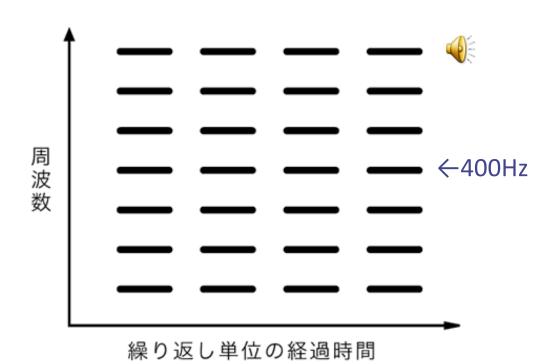
周波数差:24半音

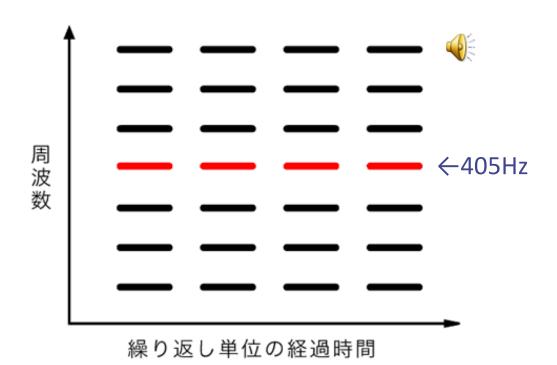


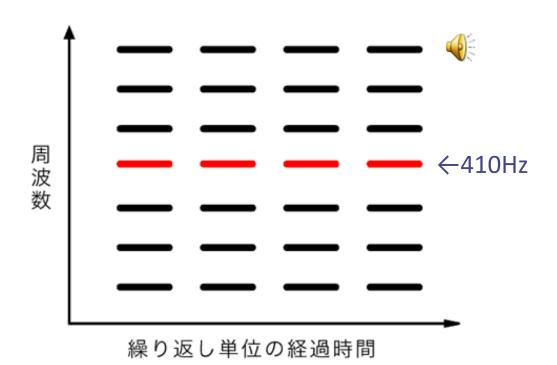
時間(1目盛り0.12秒)

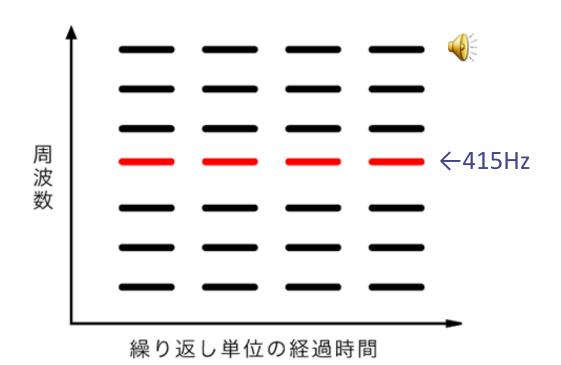


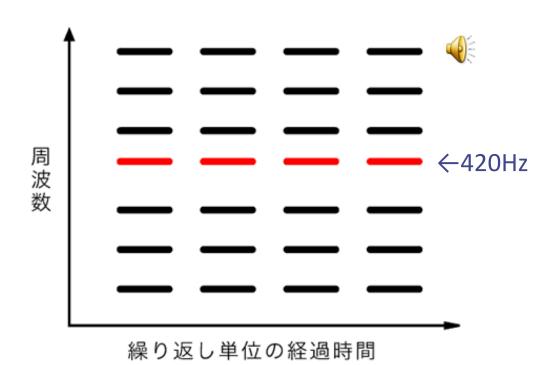
パスクッリ作曲『ドニゼッティ『ポリウート』の主題による幻想曲』より

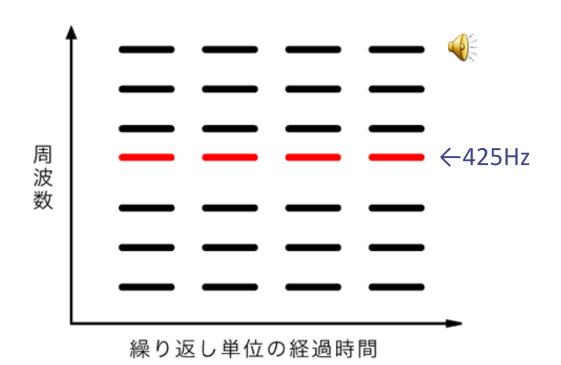


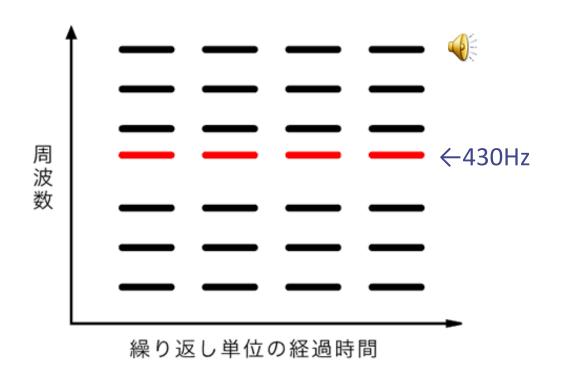


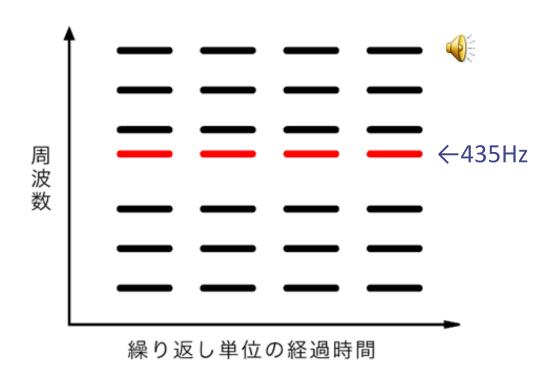


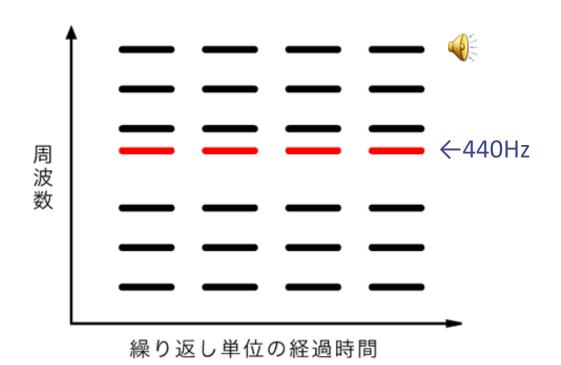


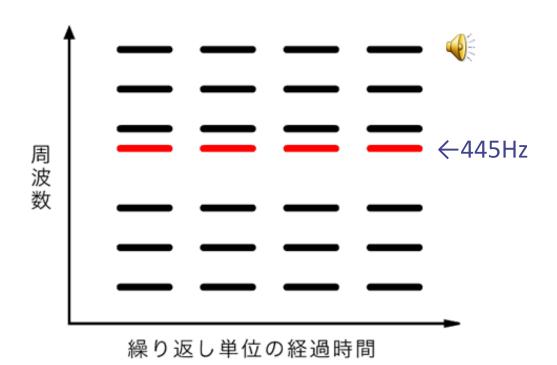












最尤推定法

- ■分離行列 ₩ を直接推定
- lacksquare 観測信号 $X=\{oldsymbol{x}(t)\}_{1\leq t\leq T}$ に対する $oldsymbol{W}$ の尤度関数

$$\mathcal{L}(\boldsymbol{W}) = \prod_{t=1}^{T} p(\boldsymbol{x}(t)|\boldsymbol{W}) \rightarrow \text{maximize}$$

■線形変換と確率密度関数

$$\mathbf{y}(t) = \mathbf{W}\mathbf{x}(t) \longrightarrow \underline{p(\mathbf{y}(t))} = \frac{1}{|\det \mathbf{W}|}p(\mathbf{x}(t))$$

■音源信号の独立性と非Gauss性を仮定

$$p(\boldsymbol{y}(t)) = \prod_{i=1}^{I} p(y_i(t))$$
 $p(y_i(t))$: Laplace分布など

$$\log \mathcal{L}(\boldsymbol{W}) = T \log |\det \boldsymbol{W}| + \sum_{t=1}^{T} \sum_{i=1}^{T} \log p(y_i(t))$$

最尤推定法

目的関数:

$$\mathcal{J}(\boldsymbol{W}) = \log|\det \boldsymbol{W}| + \frac{1}{T} \sum_{t} \sum_{i} \log p(y_i(t))$$

勾配法によりW を反復的に更新

$$oldsymbol{W} \leftarrow oldsymbol{W} + \eta rac{\partial \mathcal{J}(oldsymbol{W})}{\partial oldsymbol{W}}$$
 (η はステップサイズ)

$$\frac{\partial \mathcal{J}(\boldsymbol{W})}{\partial \boldsymbol{W}} = (\boldsymbol{W}^{\mathrm{T}})^{-1} - \frac{1}{T} \sum_{t} \boldsymbol{\Phi}(\boldsymbol{y}(t)) \boldsymbol{x}(t)^{\mathrm{T}}$$

$$oldsymbol{\Phi}(oldsymbol{y}(t)) = egin{bmatrix} \phi(y_1(t)) \ dots \ \phi(y_I(t)) \end{bmatrix} & \phi(y)$$
 の具体形 $\phi(y_I(t))$ Laplace分布の場合: $\phi(y) = \mathrm{sign}(y) \ y$

$$\phi(y) = -\frac{\partial \log p(y)}{\partial y}$$

先の近似分布の場合:
$$\phi(y) = \frac{y}{\sqrt{y^2 + \alpha}}$$

自然勾配(Natural Gradient)法

■勾配法では W の逆行列計算が厄介

$$\frac{\partial \mathcal{J}(\boldsymbol{W})}{\partial \boldsymbol{W}} = (\boldsymbol{W}^{\mathrm{T}})^{-1} - \frac{1}{T} \sum_{t} \boldsymbol{\Phi}(\boldsymbol{y}(t)) \boldsymbol{x}(t)^{\mathrm{T}}$$

■自然勾配(Natural Gradient)

$$\frac{\partial \mathcal{J}(\boldsymbol{W})}{\partial \boldsymbol{W}} \boldsymbol{W}^{\mathrm{T}} \boldsymbol{W} = \left(\boldsymbol{I} - \frac{1}{T} \sum_{t} \boldsymbol{\Phi}(\boldsymbol{y}(t)) \boldsymbol{x}(t)^{\mathrm{T}} \right) \boldsymbol{W}$$

- ■逆行列計算が不要
- Equivariance Property 混合行列Hの影響(特異点に近くて不安定, etc.)を受けない
- ■アルゴリズムは以下のとおり

$$\begin{aligned} \boldsymbol{y}(t) \leftarrow \boldsymbol{W} \boldsymbol{x}(t) \\ \boldsymbol{W} \leftarrow \boldsymbol{W} + \eta \Big(\boldsymbol{I} - \frac{1}{T} \sum_{t} \boldsymbol{\Phi}(\boldsymbol{y}(t)) \boldsymbol{y}^{\mathrm{T}} \Big) \boldsymbol{W} \end{aligned}$$

自然勾配の導出 (1/2)

- ■最急降下方向
 - $W \in W + \epsilon dW$ に変化させたときに最も $\mathcal{J}(W + \epsilon dW) \mathcal{J}(W)$ を 小さくする dW が最急降下方向
 - ■モデルの接空間がユークリッド的でない場合は 「偏微分方向 ≠ 最急降下方向」
- **■**d**W**のノルムの定義
 - $oldsymbol{W}$ における変化を単位行列 $oldsymbol{I}$ に移し変えて $oldsymbol{W}+\epsilon\mathrm{d}oldsymbol{W}=(oldsymbol{I}+\epsilon\mathrm{d}oldsymbol{W}oldsymbol{W}^{-1})oldsymbol{W}$ と変形し,実質的な変化分を $\mathrm{d}oldsymbol{W}oldsymbol{W}^{-1}$ と捉える
 - $d\mathbf{W}\mathbf{W}^{-1}$ のFrobeniusノルム $\|d\mathbf{W}\mathbf{W}^{-1}\|_F^2 = \operatorname{tr}(\mathbf{W}^{-\mathsf{T}}d\mathbf{W}^{\mathsf{T}}d\mathbf{W}\mathbf{W}^{-1}) = \operatorname{tr}(\mathbf{W}^{-1}\mathbf{W}^{-\mathsf{T}}d\mathbf{W}^{\mathsf{T}}d\mathbf{W})$ を $d\mathbf{W}$ のノルムと定義

自然勾配の導出 (2/2)

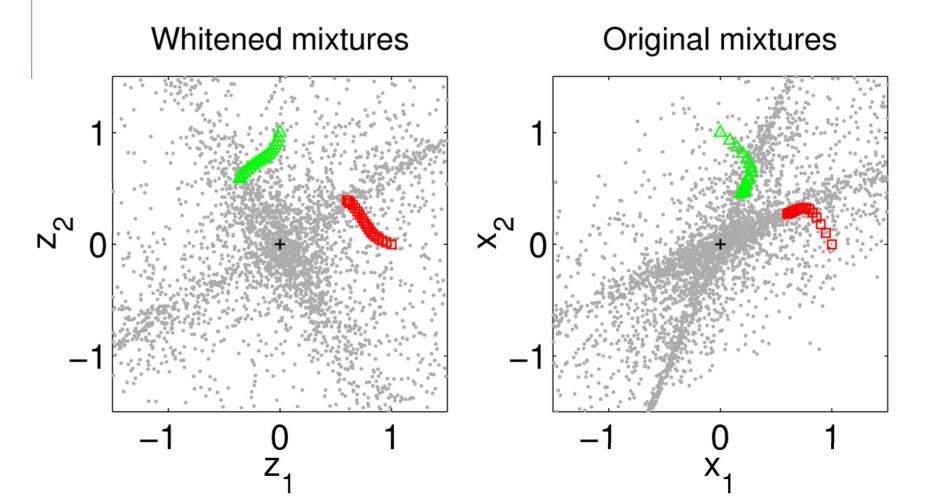
- ■最急降下方向の導出
 - $\operatorname{tr}(\boldsymbol{W}^{-1}\boldsymbol{W}^{-1}\operatorname{d}\boldsymbol{W}^{\mathsf{T}}\operatorname{d}\boldsymbol{W}) = 1$ という制約の下で $\mathcal{J}(\boldsymbol{W} + \epsilon\operatorname{d}\boldsymbol{W}) \mathcal{J}(\boldsymbol{W}) \simeq \epsilon\operatorname{tr}(\nabla\mathcal{J}(\boldsymbol{W})^{\mathsf{T}}\operatorname{d}\boldsymbol{W})$ を最小化する $\operatorname{d}\boldsymbol{W}$ を 求める最適化問題として定式化
 - Lagrangeの未定乗数法 $\frac{\partial}{\partial (\mathrm{d} \boldsymbol{W})} \{ \epsilon (\nabla \mathcal{J} (\boldsymbol{W})^\mathsf{T} \mathrm{d} \boldsymbol{W}) \underline{\lambda} (1 \mathrm{tr} (\boldsymbol{W}^{-1} \boldsymbol{W}^{-\mathsf{T}} \mathrm{d} \boldsymbol{W}^\mathsf{T} \mathrm{d} \boldsymbol{W})) \} = 0$
 - $\Rightarrow \epsilon \nabla \mathcal{J}(\boldsymbol{W})^{\mathsf{T}} + 2\lambda \boldsymbol{W}^{-1} \boldsymbol{W}^{-\mathsf{T}} d\boldsymbol{W}^{\mathsf{T}} = 0$
 - $\Rightarrow dW \propto -\nabla \mathcal{J}(W) \underline{W}^{\mathsf{T}} W$

→ 逆行列をキャンセルしてくれる

W の変化を単位行列に移し変えて考えているため、 W に依らず一定の収束特性を示す \Rightarrow 等価性(Equivalence)

自然勾配法による推定の様子

- ■赤(□): $w_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ を初期値に設定 $\mathbf{w}_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ を初期値に設定 電観測信号の白色化をせずとも良好な解に収束



目次

- ■独立成分分析について
 - ■定式化, 歴史, 応用
- ■信号の統計的性質
 - ■信号を混ぜる一中心極限定理
- ■独立成分分析のアルゴリズム
 - ■白色化+ FastICA
 - ■最尤推定法by Natural Gradient

まとめ

- ■中心極限定理
 - ■音をたくさん混ぜていくと振幅値の分布は正規分布に近づく
- ■独立成分分析
 - ■独立 = エントロピー減 = 正規分布から遠ざかる
 - ■非Gauss性の分布の例: Laplace分布
 - ■効率的なアルゴリズムの紹介
 - ◆FastICA, 自然勾配法

レポート課題の対象論文

S. Amari, A. Cichocki and H.H. Yang, "A new learning algorithm for blind signal separation," In Advances in Neural Information Processing Systems (NIPS), vol. 8, pp. 757-763 (1996).