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ABSTRACT

Recently, a technique named ’blind decorrelation’ was proposed by
which we can blindly diagonalize correlation matrices of isotropic
noises observed by particular crystal-shape sensor arrays. This tech-
nique enables us to estimate the power of unknown target signals,
which may improve the performance of inverse filters such as the
Wiener filter. It was clarified that several classes of crystal-shape
arrays achieve the blind decorrelation; and some necessary condi-
tions imposed on a sensor array to realize the blind decorrelation
were revealed. However, we do not have a necessary and sufficient
condition for a sensor array to achieve the blind decorrelation.

In this paper, we show a necessary and sufficient condition for a
sensor array to achieve the blind decorrelation, using a novel matrix
analysis scheme named ’symmetric decomposition’.

Index Terms— correlation matrices, blind decorrelation, sym-
metric decomposition, joint diagonalization, inverse filtering

1. INTRODUCTION

In the field of array signal processing, such as a multi-channel linear
inverse filtering, noise suppression is one of important issues. One
of classical and popular linear inverse filters is the minimum vari-
ance distortionless response filter (MVDRF), which is defined as the
left inverse matrix of an observation matrix minimizing the variance
of restored signals. It is well known that the MVDRF is identical
to the best linear unbiased estimator (BLUE) when unknown target
signals are uncorrelated with observation noises. When the correla-
tion matrix of the unknown target signals (or the power of the target
signal in a single channel case) is available, we can use the Wiener
filter, which is defined as the minimizer of expected squared errors
between the unknown target signals and estimated ones over the sig-
nals and the noises. However, the correlation matrix of the unknown
target signals is unavailable in practical problems. Thus, in order to
adopt the Wiener filter, we have to estimate the correlation matrix
of the unknown target signals (or the power of the target signal in
a single channel case) in advance. Zelinski proposed a method for
estimating the power of the unknown target signal in a single chan-
nel case by incorporating the fact that the correlation matrix of the
noises is nearly diagonal when the distances between sensors are far
enough[1]. However, this assumption for the sensors prevents us
from using this method for signals including high-frequency compo-
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nents. On the other hand, Ono et al. proved recently that the cor-
relation matrices of isotropic noises observed by particular crystal-
shape arrays can be diagonalized blindly[2, 3, 4]. This scheme was
named ’blind decorrelation’. The blind decorrelation technique en-
ables us to estimate the power of the unknown target signal when
the noises are isotropic even if the distances between sensors are
comparatively small since the non-diagonal elements of the corre-
lation matrix of the observations can be noise-free by applying the
diagonalizer obtained by the blind decorrelation technique. More-
over, it is reported in [5] that the blind decorrelation technique can
be used to estimate the correlation matrix of the noises itself. Ono
et al. clarified that several classes of crystal-shape arrays achieve
the blind decorrelation[2]; and some necessary conditions imposed
on a sensor array to realize the blind decorrelation were revealed[2].
However, we do not have a necessary and sufficient condition for a
sensor array to achieve the blind decorrelation.

In this paper, we show a necessary and sufficient condition for a
sensor array to achieve the blind decorrelation, using a novel matrix
analysis scheme named ’symmetric decomposition’.

2. INVERSE FILTERING BY WIENER FILTER

Let n, m (m ≤ n), and t be the number of observations, the number
of unknown target signals, and the time index (or the frame index
in the short time Fourier domain), respectively. Let s(t) ∈ Cm,
n(t) ∈ Cn, and A ∈ Cn×m be an unknown target signal vector,
an observation noise vector, and a given observation matrix consist-
ing of steering vectors of s(t) (or corresponding to a mixing matrix
related with impulse responses between the sources of the target sig-
nals and the sensors) with rank(A) = m. We assume that the noise
vector is zero-mean and uncorrelated with the unknown target signal
vector. We assume that an observation vector x(t) ∈ Cn is given by
the following model:

x(t) = As(t) + n(t). (1)

Note that we omit the frequency bin index since the following con-
tents does not depend on it. The aim of the inverse filtering is to
obtain the signal y(t) written as

y(t) = Wx(t), (2)

that is as closer to s(t) as possible, where the matrix W ∈ Cm×n

denotes an inverse filter of A.



The Wiener filter (WF) is one of classical and popular inverse
filters and is defined as

WWF = argminW Es,n||Wx(t) − s(t)||2, (3)

where Es,n denotes the mathematical expectation over s(t) and
n(t). The closed-form solution of the WF is written as

WWF = RA∗(ARA∗ + Q)−1, (4)

where the superscript ∗ denotes the adjoint (conjugate and transposi-
tion) operator; and R ∈ Cm×m and Q ∈ Cn×n denote the correla-
tion matrices of the unknown target signal vector and the observation
noise vector defined as

R = Es[s(t)s∗(t)],
Q = En[n(t)n∗(t)],

respectively. Since we assume that the observation noise vector and
the unknown target signal vector are uncorrelated, the correlation
matrix X of the observation vector x(t) is reduced to

X = Es,n[x(t)x∗(t)]

= Es,n[(As(t) + n(t))(As(t) + n(t))∗]

= AEs,n[s(t)s∗(t)]A∗ + Es,n[n(t)n∗(t)]

= ARA∗ + Q. (5)

Substituting Eq.(5) to Eq.(4) yields an another expression of the WF
written as

WWF = RA∗X−1. (6)

An estimate of the correlation matrix X can be easily obtained by
the given observations. However, we have to estimate the correlation
matrix R in order to use the WF.

3. BLIND DECORRELATION OF CORRELATION
MATRICES OF ISOTROPIC NOISES

In case of m = 1, Zelinski estimated the power of the target signal
by the non-diagonal elements of the correlation matrix of the obser-
vations in [1], incorporating the fact that the cross power spectrum of
the observation noises is nearly equal to zero when the distance be-
tween any two sensors are far enough. However, this requirement for
the sensors prevents us from adopting this method for target signals
including high-frequency components.

On the other hand, Ono et al. clarified that the correlation ma-
trices of isotropic noises observed by particular crystal-shape arrays
can be diagonalized by a constant non-singular matrix[2, 3, 4]. This
scheme was named ’blind decorrelation’. In this section, we review
the theory of the blind decorrelation technique.

We define the isotropic observation noises as the noises satisfy-
ing the following two properties:

1) the noise power spectrum on each sensor is identical,

2) the noise cross spectrum is determined by only a distance be-
tween sensors.

The correlation matrix of the isotropic observation noises can be
written as

Q =

2

6

4

Γ(r11) · · · Γ(r1n)
...

. . .
...

Γ(rn1) · · · Γ(rnn)

3

7

5

, (7)

where rij denote the distance between the i-th sensor and the j-th
sensor; and Γ denotes some function that gives the (cross) power

spectrum which only depends on the distance between two sensors.
Note that the matrix Q defined by Eq.(7) is symmetric since rij =
rji holds for any i, j ∈ {1, . . . , n}. For instance, the correlation
matrix of the isotropic observation noises observed by a unit square
array whose sensors are numbered clockwise, is written as

Q =

2

6

6

4

Γ(0) Γ(1) Γ(
√

2) Γ(1)

Γ(1) Γ(0) Γ(1) Γ(
√

2)

Γ(
√

2) Γ(1) Γ(0) Γ(1)

Γ(1) Γ(
√

2) Γ(1) Γ(0)

3

7

7

5

. (8)

The following theorems are the important results for the blind decor-
relation shown in [2]

Theorem 1 [2] If the correlation matrix Q of the isotropic obser-
vation noises defined by Eq.(7) can be diagonalized by a constant
unitary matrix U for any function Γ, then a set of distances from the
i-th sensor to the others is identical for any i ∈ {1, . . . , n}.

Theorem 2 [2] If the sensors are positioned to all vertexes of a
shape belonging to one of the following five classes of shapes:

1) regular polygons,

2) rectangular,

3) regular polygonal prisms,

4) rectangular solid,

5) regular polyhedrons,

then the correlation matrix Q of the isotropic observation noises ob-
served by the array can be diagonalized by a constant unitary matrix
U .

Please refer to [2] for more details of the theoretical results in-
cluding the closed-form of the unitary matrix U for each class.

Once a constant diagonalizer U is given, the correlation matrix
of the observations can be transformed to

U∗XU = U∗ARA∗U + Λ, (9)

where Λ denotes a diagonal matrix satisfying Q = UΛU∗. Thus,
the non-diagonal elements of U∗XU are noise-free, which means
that we can estimate the powers of the unknown target signals[3, 4].
Moreover, it is reported in [5] that the blind decorrelation technique
can be used to estimate the correlation matrix of the isotropic obser-
vation noises itself.

As shown above, we have a necessary condition and a sufficient
condition for the blind decorrelation. However, we do not have a
necessary and sufficient condition for a sensor array to achieve the
blind decorrelation.

4. ANALYSES FOR BLIND DECORRELATION BASED ON
SYMMETRIC DECOMPOSITION

In this section, we give a necessary and sufficient condition for a
sensor array to achieve the blind decorrelation.

4.1. Mathematical Preliminaries

Let D = {r1, . . . , rK} be the set of distances between sensors,
where K denotes the number of different distances. Then, the corre-
lation matrix Q of the observation noises can be decomposed as

Q =

K
X

i=1

Γ(ri)Bi, (10)



called ’symmetric decomposition’ of Q. The set of matrices B =
{B1, . . . , BK} is called the basis of the symmetric decomposition
of Q. Note that each Bi is a real symmetric matrix. For instance, the
symmetric decomposition of the example Eq.(8) is given as follows:

Q = Γ(0)B1 + Γ(1)B2 + Γ(
√

2)B3, (11)

where

B1 =

2

6

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

7

5

, B2 =

2

6

4

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

3

7

5

,

B3 =

2

6

4

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

3

7

5

.

Note that the basis of the symmetric decomposition of Q always in-
cludes the identity matrix which is written as B1 hereafter. Here we
introduce important theorems concerned with a joint diagonalization
of Hermitian matrices.

Theorem 3 [6] Let Bi ∈ Cn×n (i ∈ {1, . . . , K}) be Hermitian
matrices. There exist a unitary matrix U , such that U∗BiU is diag-
onal for any i ∈ {1, . . . , K}, if and only if

BiBj = BjBi (12)

holds for any i, j ∈ {1, . . . , K}.

Theorem 4 [6] Let Bi ∈ Cn×n (i ∈ {1, . . . , K}) be Hermitian
matrices satisfying

R(Bi) ⊂ R(B1)

for any i ∈ {1, . . . , K}, where R(X) denotes the linear subspace
spanned by the columns of the matrix X .

There exists a non-singular matrix T such that T ∗AiT is diag-
onal for any i ∈ {1, . . . , K}, if and only if

1. BiB
−
1 is semisimple and its eigenvalues are real for any i ∈

{1, . . . , K},

2. BiB
−
1 Bj = BjB

−
1 Bi holds for any i, j ∈ {1, . . . , K},

for a certain B−
1 (a generalized inverse matrix of B1).

4.2. Main Result

Let Q be the set of the matrices defined by Eq.(7) for any Γ and let
Q1 be the subset of Q including all non-negative matrices defined
by Eq.(7). The following theorem is the main result of this paper.

Theorem 5 The following four statements are equivalent each other:

1) There exist a non-singular matrix T such that T ∗QT is diag-
onal for any Q ∈ Q.

2) There exist a non-singular matrix T such that T ∗QT is diag-
onal for any Q ∈ Q1.

3) There exist a non-singular matrix T such that T ∗BiT is di-
agonal for any Bi ∈ B.

4) BiBj = BjBi holds for any i, j ∈ {1, . . . , K}.

Proof
1) → 2)

It is trivial since Q1 ⊂ Q.

2) → 3)
Let T be a non-singular matrix such that T ∗QT is diagonal for

any Q ∈ Q1 and let βi, (i = 2, . . . , K) be an arbitrary number
smaller than the minimum eigenvalue of Bi. Then the set of matrices
written as

C = {C1, C2, . . . , CK},
is a subset of Q1, where C1 = B1 = I and Ci = Bi − βiI for any
i ∈ {2, . . . , K}. Thus T ∗CiT is diagonal for any i ∈ {1, . . . , K}.
Since any linear combinations of the elements in C can be also diag-
onalized by T , any elements in B can be diagonalized by T .

3) → 1)
Let T be a non-singular matrix such that T ∗BiT is diagonal for

any Bi ∈ B. Since any linear combinations of the elements in B can
be also diagonalized by T , T ∗QT is also diagonal for any Q ∈ Q.

3) → 4)
Since any Bi ∈ B can be jointly diagonalized by T and R(Bi) ⊂

R(B1) = R(I),
BiBj = BjBi

is obtained for any i, j ∈ {1, . . . , K} by substituting B−
1 = I to the

second condition in Theorem 4.

4) → 3)
According to Theorem 3, there exists a unitary matrix U such

that U∗BiU is diagonal for any Bi ∈ B and it is trivial that the
unitary matrix U is non-singular. �

The most remarkable knowledge obtained by Theorem 5 is the
equivalency between 2) and 4). Given a class of the correlation ma-
trix Eq.(7), we can determine whether it can be diagonalized by a
constant non-singular matrix independent from the function Γ or not,
by testing the commutativity of all pairs of the matrices in the basis
of the symmetric decomposition. Thus, we can enumerate all lay-
outs of a sensor array with a finite number of sensors that achieves
the blind decorrelation. However, the test for all combinations of
the basis requires large amounts of computational costs especially in
case of large n. In fact, we have no layout which is not included in
the arrays specified by Theorem 2 at the present time.

It is also clarified by the statement 4) of Theorem 5 that when
we have a class of matrix Eq.(7) that can be diagonalized by a con-
stant non-singular matrix, the non-singular matrix that diagonalizes
Eq.(7) can be unitary, which means that the class of matrix defined
by Eq.(7) has invariant eigenvectors.

4.3. Algorithm for Obtaining a Joint Diagonalizer

We also introduce an algorithm for obtaining a joint diagonalizer of
all elements in B which is basically along with [7].

Let B = {B1, . . . , BK} be the basis of the symmetric decompo-
sition of Q whose elements can be jointly diagonalized. We ignore
the matrix B1 since B1 = I can be diagonalized by an arbitrary
unitary matrix. Let

B2 = P2Λ2P
∗
2 (13)

be the eigenvalue decomposition of B2, then

P ∗
2 B2P2 = Λ2 (14)



is trivially diagonal. If B2 does not have repeated eigenvalues, P2 is
uniquely determined except the ambiguity of permutation of columns.
Thus, P2 jointly diagonalizes Bi for any i ∈ {2, . . . , K}.

On the other hand, if B2 has repeated eigenvalues, Λ2 is reduced
to the form of

Λ2 =

2

6

6

6

4

λ
(2)
1 I

r
(2)
1

O

. . .
O λ

(2)
N2

I
r
(2)
N2

3

7

7

7

5

, (15)

where Ir denotes the identity matrix of degree r; N2 denotes the
number of different eigenvalues of B2; and r

(2)
k denotes the multi-

plicity of the eigenvalue λ
(2)
k of B2 satisfying

r
(2)
1 + · · · + r

(2)
N2

= n. (16)

Then, D3 = P ∗
2 B3P2 reduced to a block-diagonal matrix

D3 =

2

6

6

4

H
(3)
1 O

. . .
O H

(3)
N2

3

7

7

5

, (17)

where H
(3)
k denotes a Hermitian matrix of degree r

(2)
k .

Let
H

(3)
k = P

(3)
k Λ

(3)
k P

(3)
k

∗
(18)

be the eigenvalue decomposition of H
(3)
k and let P3 be the block-

diagonal unitary matrix written as

P3 =

2

6

6

4

P
(3)
1 O

. . .
O P

(3)
N2

3

7

7

5

, (19)

then, then
P ∗

3 P ∗
2 B3P2P3 = P ∗

3 D3P3 = Λ3

must be diagonal, where

Λ3 =

2

6

6

4

Λ
(3)
1 O

. . .
O Λ

(3)
N2

3

7

7

5

. (20)

Since from Eq.(15),

P ∗
3 P ∗

2 B2P2P3 = P ∗
3 Λ2P3 = Λ2

is also diagonal trivially, (P2P3) is a joint diagonalizer of B2 and
B3.

If H
(3)
k does not have repeated eigenvalues, P3 is uniquely de-

termined, which implies that (P2P3) jointly diagonalizes Bi for any
i ∈ {2, . . . , K}.

On the other hand, if H
(3)
k has repeated eigenvalues, we have

a joint diagonalizer of B2, B3 and B4 by similar operations for
(P2P3)

∗B4(P2P3). Finally, we have a joint diagonalizer of all ele-
ments in B by applying the same operations to Bk successively.

For instance, we give a joint diagonalizer for the example Eq.(8)
along with the above algorithm. The eigenvalue decomposition of
B2 defined by Eq.(11) is given as

B2 = P2Λ2P
∗
2 , (21)

where

P2 =

2

6

6

4

1/2 1/2 0 1/
√

2

1/2 −1/2 −1/
√

2 0

1/2 1/2 0 −1/
√

2

1/2 −1/2 1/
√

2 0

3

7

7

5

,

and

Λ2 =

2

6

4

2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0

3

7

5

,

and D3 = P ∗
2 B3P2 is reduced to

D3 =

2

6

4

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

3

7

5

,

which is already diagonal. Thus, in this case, P2 gives a joint diago-
nalizer of B2 and B3.

From this example and the fact that the matrix consisting of the
eigenvectors of a real symmetric matrix can be a real orthogonal one,
we can choose a real orthogonal matrix as a joint diagonalizer, while
a complex unitary diagonalizer is given in [2].

5. CONCLUSION

In this paper, we clarified a necessary and sufficient condition for a
sensor array to achieve the blind decorrelation for isotropic noises,
using a novel matrix analysis scheme named symmetric decompo-
sition of a matrix. Enumerating all layouts of a sensor array that
achieves the blind decorrelation on the basis of our theorem is one
of future works that should be resolved.
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