
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2014, REIMS, FRANCE

MAXIMUM RECONSTRUCTION PROBABILITY TRAINING OF RESTRICTED
BOLTZMANN MACHINES WITH AUXILIARY FUNCTION APPROACH

Norihiro Takamune1) and Hirokazu Kameoka1),2)

1) Graduate School of Information Science and Technology, The University of Tokyo,
2) NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation

{takamune,kameoka}@hil.t.u-tokyo.ac.jp

ABSTRACT

Restricted Boltzmann machines (RBMs) are stochastic neu-
ral networks that can be used to learn features from raw data.
They have attracted particular attention recently after being
proposed as building blocks for deep belief network (DBN)
and have been applied with notable success in a range of
problems including speech recognition and object recogni-
tion. The success of these models raises the issue of how
best to train them. At present, the most popular training al-
gorithm for RBMs is the Contrastive Divergence (CD) learn-
ing algorithm. We propose deriving a new training algorithm
based on an auxiliary function approach for RBMs using the
reconstruction probability of observations as the optimization
criterion. Through an experiment on parameter training of an
RBM, we confirmed that the present algorithm outperformed
the CD algorithm in terms of the convergence speed and the
reconstruction error when used as an autoencoder.

Index Terms— Deep learning, deep belief networks, re-
stricted Boltzmann machine, auxiliary function approach

1. INTRODUCTION

In recent years, Deep Belief Networks (DBN) [1] have been
applied with notable success to a wide range of applications
including image recognition and speech recognition [2]. DBN
is composed of multiple layers, each of which can be viewed
as a restricted Boltzmann machine (RBM) [3]. Layerwise
unsupervised pre-training of RBM has been found effective
for the training of the entire DBN. At present, the most pop-
ular training algorithm for RBMs is the Contrastive Diver-
gence (CD) learning algorithm [4]. If we can develop a faster
and better-behaved training algorithm for RBMs, the compu-
tational time for learning DBN can be reduced accordingly.

For many nonlinear optimization problems, parameter es-
timation algorithms constructed using an auxiliary function
have proven to be very effective. The general principle for
the parameter estimation scheme using an auxiliary function
is referred to as the “auxiliary function approach” (or alterna-
tively the “minorization-maximization (MM) approach” [5]).
Note that the auxiliary function approach itself is not an algo-
rithm, but a description of how to construct an optimization
algorithm. When applying an auxiliary function approach

This work was supported by JSPS KAKENHI Grant Number 26730100.

to a certain optimization problem, the first step is to design
an auxiliary function that upper-bounds or lower-bounds the
objective function. An algorithm that consists of iteratively
minimizing/maximizing the auxiliary function is guaranteed
to converge to a stationary point of the objective function. It
should be noted that this concept is adopted in many exist-
ing algorithms. For example, the expectation-maximization
(EM) algorithm [6] builds a surrogate for a likelihood func-
tion of latent variable models by using Jensen’s inequality. It
is also well known for its use in devising an algorithm for
non-negative matrix factorization [7, 8]. In general, if we
can build a tight upper/lower bound function for the objec-
tive function of a specific optimization problem, we expect to
obtain a fast-converging algorithm. In fact, the authors and
colleagues have thus far proposed deriving parameter esti-
mation algorithms based on the auxiliary function approach
for various optimization problems, some of which have been
proven to be significantly faster than gradient-based methods
(e.g., [8–15]). In [16], we have proposed deriving a new algo-
rithm based on the auxiliary function approach for maximum
likelihood training of RBMs. By contrast, this paper consid-
ers the problem of maximizing the reconstruction probability
of training samples (that can be interpreted as an autoencoder
training criterion), and proposes an optimization algorithm
for that problem based on the auxiliary function approach.

2. RESTRICTED BOLTZMANN MACHINES

2.1. Objective functions for training RBM
An RBM has a structure called complete bipartite graph (see
Fig. 1). One side of an RBM is called a visible layer cor-
responding to the observations and the other side is called a
hidden layer corresponding to the features. Let us denote the
units in the visible and hidden layers by v = {vi} ∈ {0, 1}I

and h = {hj} ∈ {0, 1}J , respectively, where I and J are
the numbers of the units in the visible and hidden layers. The
joint probability distribution of h and v is defined as

p (v,h|Θ) =
exp (−E (v,h;Θ))

Z (Θ)
, (1)

where

E(v,h;Θ) = −
∑
i

bVi vi −
∑
j

bHj hj −
∑
i,j

Wijvihj , (2)

978-1-4799-3694-6/14/$31.00 c⃝2014 IEEE

Fig. 1. Graph structure of RBM.
Z (Θ) =

∑
v

∑
h

exp (−E (v,h;Θ)) , (3)

and Θ = (bVi , b
H
j ,Wij) denotes the set consisting of the

model parameters of the RBM. In this paper, we will use
∑

v
and

∑
h to mean the sums over all possible patterns of v

and h, respectively. The objective of RBM learning involves
estimating Θ using N training samples, v(1), . . . ,v(N).

A frequently used objective function for RBM learning is
the mean log-likelihood given as follows:

J(Θ) =
1

N

∑
n

log p(v(n)|Θ)

=
1

N

∑
n

log
∑
h

p(v(n),h|Θ). (4)

Since an RBM can be used as an autoencoder [17], we can
also define and utilize the reconstruction probability of inputs
as an alternative objective function for RBM learning:

Jr(Θ) =
1

N

∑
n

log
∑
h

p(v(n)|h,Θ)p(h|v(n),Θ), (5)

where

p(v|h,Θ) =
p(v,h|Θ)∑
v′ p(v′,h|Θ)

, (6)

p(h|v,Θ) =
p(v,h|Θ)∑
h′ p(v,h

′|Θ)
. (7)

2.2. Contrastive Divergence Learning [1, 4]
Since it is not possible to find the parameters maximizing the
mean log-likelihood analytically, one convenient way would
be to apply the gradient ascent approach.

The partial derivative of the mean log-likelihood with re-
spect to Θ is given by

∂J

∂Θ
(Θ) =− 1

N

∑
n

∑
h

p(h|v(n),Θ)
∂E

∂Θ
(v(n),h;Θ)

+
∑
v

∑
h

p(v,h|Θ)
∂E

∂Θ
(v,h;Θ).

(8)

This leads to a simple update rule based on steepest ascent in
the log-likelihood:

Θ← Θold + ϵ∆cdΘ, (9)

where, ϵ is the learning rate and ∆cdΘ = ∂J/∂Θ. Directly
calculating the sums that run over all values of v and h leads

to a computational complexity which is in general exponential
in the number of variables. As for the first term, we can use
the fact that the hidden units are conditionally independent
given the state of the visible variables and vice versa:

p (v|h,Θ) =
∏
i

p (vi|h,Θ) , (10)

p (h|v,Θ) =
∏
j

p (hj |v,Θ) . (11)

The conditional distributions p(hj |v,Θ) and p(vi|h,Θ) can
be interpreted as the firing rate of each neuron, given by

p(vi = 1|h,Θ) = σ
(
bVi +

∑
j

Wijhj

)
, (12)

p(hj = 1|v,Θ) = σ
(
bHj +

∑
i

Wijvi

)
, (13)

where σ denotes the logistic sigmoid: σ(x) = 1/(1 + e−x).
Hence, we can replace

∑
h with

∑
j , thus allowing us to cal-

culate the expectation of the first term in (8) without the ex-
ponential complexity. However, it is still difficult to compute
the second term in (8). One convenient way is to approximate
the expectation by samples from the joint distribution. These
samples can be obtained with Gibbs sampling using

hd−1
j ∼ p(hj |vd−1,Θ), (14)

vdi ∼ p(vi|hd−1,Θ), (15)

where d denotes the step in the Gibbs sampling chain.

3. RBM LEARNING WITH AUXILIARY FUNCTION
APPROACH

3.1. Auxiliary function approach
Here we introduce the general principle of the auxiliary func-
tion approach (a.k.a the MM approach). Let us use G(θ) to
denote an objective function that we want to maximize with
respect to θ. G+(θ, θ̃) is defined as an auxiliary function for
G(θ) if it satisfies

G(θ) = max
θ̃

G+(θ, θ̃). (16)

We call θ̃ an auxiliary variable. By using G+(θ, θ̃), G(θ) can
be iteratively increased via

θ ← argmax
θ

G+(θ, θ̃), (17)

θ̃ ← argmax
θ̃

G+(θ, θ̃). (18)

Since it is preferrable to use a function that can be maximized
analytically as an auxiliary function, here we aim to design an
auxiliary function such that the parameters are separated into
individual terms:

G+(θ, θ̃) =
∑
k

gk(θk, θ̃) + C, (19)

where θk is the k-th element of θ, gk is a function that depends
only on θk and θ̃, and C is a term that does not depend on
θ. If we can design such a lower bound function, the global
maximization of G+ can be achieved by separately solving
the problems of maximizing g1, . . . , gK .

3.2. Auxiliary function approach for ML training [16]
In [16], we have proposed deriving a new algorithm based on
the auxiliary function approach for maximizing J(Θ), given
by (4). The update rules are given as

bVi ← bV,old
i + βi log

∑
n v

(n)
i∑

v

∑
h p (v,h|Θ) vi

, (20)

bHj ← bH,old
j + β(I+j) log

∑
n p

(
hj = 1|v(n),Θ

)∑
v

∑
h p (v,h|Θ)hj

, (21)

Wij ←W old
ij (22)

+ β(I+J+(i−1)J+j) log

∑
n v

(n)
i p

(
hj = 1|v(n),Θ

)∑
v

∑
h p (v,h|Θ) vihj

,

where, βi, β(I+j) and β(I+J+(i−1)J+j) (which we hereafter
denote by βk) are arbitrary values subject to βk ∈ [0, 1] and∑

k βk = 1.
It is interesting to compare these update rules with the

update rules of the CD algorithm. While each step of the CD
algorithm moves the parameters in the direction given by the
difference of the two expectations, the proposed update rule
moves the parameters in the direction given by the difference
of the logarithms of the two expectations.

3.3. Auxiliary function approach for maximizing recon-
struction probability
This paper focuses on maximizing (5) and proposes a new
optimization algorithm based on the auxiliary function ap-
proach. Instead of directly using (5) as the objective function,
here we propose to approximate it by:

Jr(Θ) ≈ 1

N

∑
n

log p(v(n)|h(n),Θ)p(h(n)|v(n),Θ)

≡ J̃r (Θ) ,

(23)

where h(n) indicates a sample drawn from the following con-
ditional distribution

h(n) ∼ p(h|v(n),Θ). (24)

By using (10), (11), (12) and (13), J̃r (Θ) can be written as

J̃r = − 1

N

∑
n

{∑
i

v
(n)
i log

(
1 + exp(−fV

ni)
)

+
∑
i

(1− v
(n)
i) log(1 + exp fV

ni)

+
∑
j

h
(n)
j log

(
1 + exp(−fH

nj)
)

+
∑
j

(1− h
(n)
j) log(1 + exp fH

nj)

}
,

(25)

where fV
ni = bVi +

∑
j Wijh

(n)
j , fH

nj = bHj +
∑

i Wijv
(n)
i .

Difficulty in solving the optimization problem of maxi-
mizing (25) lies in the fact that the terms depending on the
parameters Θ are the arguments of the logarithm functions.
Since a negative logarithm function is a convex function, we
can use its tangent line as a lower bound function:

− log (1 + exp f) ≥ −1 + exp f

ζ
− log ζ + 1, (26)

where f represents fV
ni, −fV

ni, f
H
nj or −fH

nj , that is,

f = b∗ +
∑
l

W ∗
l xl, (27)

and ζ is an auxiliary variable. Equality of (26) holds when

ζ = 1 + exp f. (28)

Next, since a negative exponential function is a concave
function, we can design a lower bound function by using
Jensen’s inequality

− exp
(
b∗ +

∑
l

W ∗
l xl

)
≥ −β0 exp

(
b∗ − α0

β0

)
−
∑
l

βl exp

(
W ∗

l xl − αl

βl

)
, (29)

where α0, αl, β0 and βl are auxiliary variables that must sat-
isfy

α0 +
∑
l

αl = 0, (30)

β0, βl ∈ [0, 1], (31)

β0 +
∑
l

βl = 1. (32)

Equality of (29) holds when

α0 = b∗ − β0

(
b∗ +

∑
k

W ∗
k xk

)
, (33)

αl = W ∗
l xl − βl

(
b∗ +

∑
k

W ∗
k xk

)
. (34)

Therefore, we can construct a lower bound function
J̃+
r

(
Θ, Θ̄

)
of J̃r (Θ) by using (25), (26) and (29). Now,

let us consider performing the updates (17) and (18). The
maximizers of the lower bound function with respect to the
auxiliary variables ζ, α0 and αl are given by (28), (33) and
(34). By substituting (28), (33) and (34) into the lower bound

function, we have

J̃+
r

(
Θ, Θ̄

)
= − 1

N

∑
n

{∑
i

v
(n)
i

(
1− q̂Vni

)
ξVni

+
∑
i

(
1− v

(n)
i

)
q̂Vniη

V
ni

+
∑
j

h
(n)
j

(
1− q̂Hnj

)
ξHnj

+
∑
j

(
1− h

(n)
j

)
q̂Hnjη

H
nj

}
+ C

(
Θ̄
)
,

(35)

with

q̂Vni = p
(
v
(n)
i = 1|h(n),Θold

)
, (36)

q̂Hnj = p
(
h
(n)
j = 1|v(n),Θold

)
, (37)

ξVni = βV
i0e

−b̂Vi +
∑
j

βV
ije

−ŴV
ijh

(n)
j , (38)

ηVni = βV
i0e

b̂Vi +
∑
j

βV
ije

ŴV
ijh

(n)
j , (39)

ξHnj = βH
0je

−b̂Hj +
∑
i

βH
ije

−ŴH
ijv

(n)
i , (40)

ηHnj = βH
0je

b̂Hj +
∑
i

βH
ije

ŴH
ijv

(n)
i , (41)

where bV,old
i , bH,old

j and W old
ij correspond to the parame-

ter estimates obtained at the previous iteration, and b̂Vi =
bVi −bV,old

i

βV
i0

, b̂Hj =
bHj −bH,old

j

βH
0j

, ŴV
ij =

Wij−W old
ij

βV
ij

, ŴH
ij =

Wij−W old
ij

βH
ij

, C
(
Θ̄
)

is a constant term about Θ and auxiliary

variables Θ̄ are bV,old
i , bH,old

j , W old
ij , βV

i0, βV
ij , βH

0j and βH
ij .

Note that βV
i0, βV

ij , βH
0j and βH

ij are arbitrary variables that
must satisfy

βV
i0, β

V
ij , β

H
0j , β

H
ij ∈ [0, 1],

βV
i0 +

∑
j

βV
ij = 1, ∀i,

βH
0j +

∑
i

βH
ij = 1, ∀j.

(42)

We notice that in this lower bound function, the parameters
are separated in individual terms. Thus, the auxiliary function
can be maximized with respect to Θ by maximizing each term
separately. By solving ∂J̃+

r /∂bVi = 0 and ∂J̃+
r /∂bHj = 0, we

obtain closed-form update rules:

bVi = bV,old
i +

βV
i0

2
log

 ∑
n v

(n)
i

(
1− q̂Vni

)∑
n

(
1− v

(n)
i

)
q̂Vni

 , (43)

bHj = bH,old
j +

βH
0j

2
log

 ∑
n h

(n)
j

(
1− q̂Hnj

)
∑

n

(
1− h

(n)
j

)
q̂Hnj

 . (44)

Unfortunately, it is difficult to represent ∂J̃+
r /∂Wij = 0 in

closed form:

∂J̃+
r

∂Wij
= − 1

N

∑
n

{
− v

(n)
i

(
1− q̂Vni

)
h
(n)
j e−ŴV

ijh
(n)
j

+
(
1− v

(n)
i

)
q̂Vnih

(n)
j eŴ

V
ijh

(n)
j

− h
(n)
j

(
1− q̂Hnj

)
v
(n)
i e−ŴH

ijv
(n)
i

+
(
1− h

(n)
j

)
q̂Hnjv

(n)
i eŴ

H
ijv

(n)
i

}
= 0.

(45)

However, ∂2J̃+
r

∂W 2
ij

are always negative:

∂2J̃+
r

∂W 2
ij

= − 1

N

∑
n

{
1

βV
ij

v
(n)
i

(
1− q̂Vni

) (
h
(n)
j

)2

e−ŴV
ijh

(n)
j

+
1

βV
ij

(
1− v

(n)
i

)
q̂Vni

(
h
(n)
j

)2

eŴ
V
ijh

(n)
j

+
1

βH
ij

h
(n)
j

(
1− q̂Hnj

) (
v
(n)
i

)2

e−ŴH
ijv

(n)
i

+
1

βH
ij

(
1− h

(n)
j

)
q̂Hnj

(
v
(n)
i

)2

eŴ
H
ijv

(n)
i

}
< 0,

(46)

where v
(n)
i , h

(n)
j ∈ {0, 1}, q̂Vni, q̂Hnj ∈ [0, 1], therefore, the

solution of ∂J̃+
r /∂Wij = 0 can be efficiently obtained with

Newton’s method.
It is interesting to compare the updates (43) and (44) with

those of the CD algorithm (9). From this perspective, βV
i0 and

βH
0j as well as βV

ij and βH
ij can be regarded as the learning

rate. Since βV
i0, βV

ij , βH
0j and βH

ij must satisfy the sum-to-unity
constraints, the larger the number of the hidden and visible
variables becomes, the smaller βV

i0, βV
ij , βH

0j and βH
ij become

in average, thus slowing the convergence speed of the algo-
rithm. We can thus expect to accelerate the algorithm by re-
placing β′ with βγ (where β is intended to be an abbreviation
for βV

i0, βV
ij , βH

0j and βH
ij), setting γ ∈ [0, 1] at a reasonably

small value at the early stage of the algorithm and moving it
towards 1 as the iteration proceeds.

4. EXPERIMENT

We conducted an experiment to compare the performance of
the present algorithm against the maximum likelihood train-
ing algorithm based on the auxiliary function approach de-
scribed in [16] (hereafter referred to as “auxiliary function
1”) and the CD algorithm. In order to evaluate the values

of the likelihoods, we used a small scale RBM with I = 10
visible units and J = 8 hidden units. We used N = 2000
randomly-generated binary data as the training examples. All
the algorithms were run for T = 500 iterations. The initial
parameters were set at the same values for all the algorithms,
which were generated randomly.

The arbitrary auxiliary variables of the present method
βV
i0, βV

ij , βH
0j and βH

ij were set uniformly:

βV
i0 = βV

ij =
1

1 + J
, (47)

βH
0j = βH

ij =
1

1 + I
. (48)

This was also the case for “auxiliary function 1.” The learning
rate ϵ of the CD algorithm and the value of γ were scheduled
in the following way: At step t of the algorithms, we updated
ϵ and γ at

ϵ (t) = ϵinit

(
ϵend
ϵinit

) t−1
T−1

, (49)

γ (t) = γinit

(
γend
γinit

) t−1
T−1

(50)

respectively, where we set ϵinit = 1, ϵend = 0.1, γinit = 0.1
and γend = 1. The Gibbs sampling and Newton’s method
were both run for 1 iteration at each iterative step. We imple-
mented all the learning algorithms in MATLAB.

In addition to the log-likelihood (4), we used the recon-
struct error rate Ereconst for the measure for comparisons:

Ereconst =
1

NI

∑
n

∑
i

(
v
(n)
i − v̄

(n)
i

)2

, (51)

where

h̄
(n)

= argmax
h

p
(
h|v(n),Θ

)
, (52)

v̄(n) = argmax
v

p
(
v|h̄(n)

,Θ
)
. (53)

Fig. 2 shows the evolution of the log-likelihoods (4) and
the reconstruction error rate (51) obtained with all the algo-
rithms. With the MATLAB implementation, the execution
time per iteration for the present algorithm and “auxiliary
function 1” was about the same. For the present algorithm
and “auxiliary function 1,” the convergence in terms of of the
likelihoods was faster when updating γ than when fixing it at
1, as expected. It is interesting to note that the present algo-
rithm tended to increase the likelihood score even though it
was designed to optimize a criterion different from the likeli-
hood.

Next, we investigated the case where the number of the
states of RBM was set at I = 1000 and J = 800. All other
conditions were the same as the previous experiment. As for
the learning rate, we set ϵinit = 0.1 and ϵend = 0.01 for the
CD algorithm, γinit = 0.5 and γend = 1 for the present al-
gorithm, and γinit = 0.3 and γend = 0.5 for “auxiliary func-
tion 1,” respectively. Since under this setup, computing the
log-likelihood required considerable time, we used only the

0 100 200 300 400 500
−1.6

−1.55

−1.5

−1.45

−1.4

−1.35

−1.3

−1.25

−1.2
x 10

4

loop count
lo

g
−

li
k
el

ih
o
o
d

Contrastive Divergence

Auxiliary Function 1

Auxiliary Function 1 with gamma

Auxiliary Function 2

Auxiliary Function 2 with gamma

(a) Evolution of log-likelihood

0 100 200 300 400 500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

loop count

re
co

n
st

ru
ct

 e
rr

o
r

ra
te

Contrastive Divergence

Auxiliary Function 1

Auxiliary Function 1 with gamma

Auxiliary Function 2

Auxiliary Function 2 with gamma

(b) Evolution reconstruction error rate

Fig. 2. Evolution of the log-likelihood (a) and the reconstruc-
tion error rate (b) during training of a small scale RBM using
the CD algorithm (black solid line), the present algorithm and
“auxiliary function 1” (red and blue) with and without the γ
scheduling (solid and dashed line), respectively.

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

loop count

re
co

n
st

ru
ct

 e
rr

o
r

ra
te

Contrastive Divergence

Auxiliary Function 1

Auxiliary Function 1 with gamma

Auxiliary Function 2

Auxiliary Function 2 with gamma

Fig. 3. Evolution of the reconstruction error rate during the
training of a larger scale RBM using the CD algorithm (black
solid line), the present algorithm and “auxiliary function 1”
(red and blue) with and without the γ scheduling (solid and
dashed line), respectively.
reconstruction error rate (51) as the measure for the compari-
son.

Fig. 3 shows the evolution of the reconstruction error rate
(51) during the training using the three algorithms. The effect
of the γ scheduling appeared to be more significant under the
large I and J settings, since βV

i0, βV
ij , βH

0j and βH
ij become

much smaller in average than under the small I and J set-
tings. Furthermore, the present algorithm converged faster
than “auxiliary function 1.” This was simply because the ob-
jective function employed in the present algorithm reflects the
reconstruction error rate better than the likelihood. These re-
sults encourage us to hope that the convergence of the present
algorithm and “auxiliary function 1” can further be acceler-
ated by seeking for a better way of γ scheduling.

5. CONCLUSION

This paper proposed deriving a new training algorithm based
on an auxiliary function approach for RBMs using the recon-
struction probability of observations as the optimization cri-
terion. Through an experiment on parameter training of an
RBM, we confirmed that the present algorithm outperformed
the CD algorithm in terms of the convergence speed and the
reconstruction error when used as an autoencoder. Future
work includes using the present algorithm as pre-training of
DBN and investigating its behavior.

6. REFERENCES

[1] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18,
no. 7, 2006.

[2] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
and B. Kingsbury, “Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research
groups,” Signal Processing Magazine, IEEE, vol. 29, no. 6, pp.
82–97, 2012.

[3] P. Smolensky, “Information processing in dynamical systems:
Foundations of harmony theory,” in Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, D.E.
Rumelhart and J.L McClelland, Eds. MIT Press, 1986.

[4] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence,” Neural Computation, vol. 14, no. 8,
2002.

[5] J. De Leeuw and W. J. Heiser, “Convergence of correction
matrix algorithms for multidimensional scaling,” in Geometric
representations of relational data, J. C. Lingoes, E. E. Roskam,
and I. Borg, Eds. Ann Arbor, MI: Mathesis Press, 1977.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” J. of
Royal Statistical Society Series B, vol. 39, 1977.

[7] D. D. Lee and H. S. Seung, “Algorithms for non-negative ma-
trix factorization,” in Adv. Neural Information and Processing
Systems (NIPS). 2001, pp. 556–562, MIT Press.

[8] M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono,
and S. Sagayama, “Convergence-guaranteed multiplicative
algorithms for non-negative matrix factorization with beta-
divergence,” in 2010 IEEE International Workshop on Ma-
chine Learning for Signal Processing (MLSP 2010), 2010, pp.
283–288.

[9] H. Kameoka, Statistical Approach to Multipitch Analysis,
Ph.D. thesis, The University of Tokyo, 2007.

[10] H. Kameoka, N. Ono, and S. Sagayama, “Auxiliary function
approach to parameter estimation of constrained sinusoidal
model for monaural speech separation,” in 2008 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP2008), 2008, pp. 29–32.

[11] H. Kameoka, N. Ono, K. Kashino, and S. Sagayama, “Com-
plex NMF: A new sparse representation for acoustic signals,”
in Proceedings of the 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2009),
2009, pp. 3437–3440.

[12] H. Kameoka, T. Nakatani, and T. Yoshioka, “Robust speech
dereverberation based on non-negativity and sparse nature of
speech spectrograms,” in Proceedings of the 2009 IEEE Inter-
national Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2009), 2009, pp. 45–48.

[13] N. Ono, “Stable and fast update rules for independent vector
analysis based on auxiliary function technique,” in 2011 IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA2011), 2011, pp. 261–264.

[14] N. Yasuraoka, H. Kameoka, T. Yoshioka, and H. G. Okuno, “I-
divergence-based dereverberation method with auxiliary func-
tion approach,” in Proceedings of the 2011 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP 2011), 2011, pp. 369–372.

[15] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Effi-
cient algorithms for multichannel extensions of Itakura-Saito
nonnegative matrix factorization,” in 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP2012), 2012, pp. 261–264.

[16] H. Kameoka and N. Takamune, “Training restricted Boltz-
mann machines with auxiliary function approach,” in 2014
IEEE International Workshop on Machine Learning for Signal
Processing (MLSP 2014), 2014, submitted.

[17] L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed, and G. E.
Hinton, “Binary coding of speech spectrograms using a deep
auto-encoder,” in Proceedings of the International Conference
on Spoken Language Processing (Interspeech’2010 - ICSLP),
2010, pp. 1692–1695.

