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Abstract

We propose a novel technique to enhance singing voice in
monaural music audio signals by capturing fluctuation of
singing voice on spectrogram. Based on multiple spectrogram
representation, the method separates an input signal into three
components: stationary, fluctuated, and transient components,
and singing voice is mainly included in the fluctuated compo-
nent. The proposed algorithm consists of two stage processing
of the sinusoidal/non-sinusoidal separation algorithm which we
have recently developed. It is called harmonic/percussive sound
separation (HPSS). In first stage, we filter out the stationary
component based on HPSS analysis with long frame, and in
second stage, we filter out the transient component based on
HPSS analysis with short frame. We show that the proposed
method effectively enhances the singing voice in music by ex-
periments and show its application to melody extraction, which
also supports the effectiveness of the method.

Index Terms: singing voice enhancement, singing voice sup-
pression, harmonic/percussive sound separation, fluctuation,
time-frequency resolution

1. Introduction

Music, especially popular music, often consists of melody sung
by a singer and musical accompaniments played by instruments.
In those music, vocal tracks are often the most impressive in
all sounds. Therefore, in many music applications, e.g., au-
tomatic karaoke generation, singer identification, melody esti-
mation, lyrics transcription, and in many music information re-
trieval (MIR)-related tasks, a technique to separate a music sig-
nal into vocal components and non-vocal components has much
importance.

One of difficulties in singing voice enhancement is derived
from the properties of “noise” to be reduced. In singing voice
enhancement, “noise” consists of musical sounds played by mu-
sical instruments, e.g., guitar, drums, which we cannot assume
several properties, which is assumed in other fields, such as
whiteness, stationarity, noncorrelatedness to the signal, etc.

There have been several studies on singing voice extraction
in music. Ozerov et al. [1] modeled spectra of singing voice by
Gaussian mixture model, and derived an singing voice extrac-
tion method using a filter adaptation method. Some state-of-
the-art singing voice enhancement algorithm consist of several
stages. Li and Wang [2] proposed a singing voice enhancement
method that is comprised of three stages: singing voice detec-
tion, predominant pitch detection, and filtering. Hsu and Jang’s
method [3] is also a staged processing. The method first dis-
criminate accompaniment, unvoiced, and voiced segments, then
track the predominant pitch using Li and Wang’s method, and

finally resynthesize the singing voice component.

Singing melody pitch extraction is also deeply related to
melody extraction because pitch information is very useful for
extracting melody. Goto [4] proposed a method called PreFEst
which estimates the predominant pitch based on multi-agent
model. Such Fp estimation techniques can also be applied to
enhance singing voice. In fact, for example, Fujihara et al [5]
extracted harmonic structure of the pitch contour estimated by
PreFEst, and used it for a MIR application.

Meanwhile, our approach to the problem is quite different
from those of state-of-the-art methods. We focus on fluctua-
tion of singing voice such as vibrato. In this paper, we show
that the difference among stationary, fluctuated, and transient
signals on spectrogram with various frame length. Then, we
describe an algorithm to separate those three components based
on a sinusoidal/non-sinusoidal separation algorithm, called har-
monic/percussive sound separation (HPSS) [6], and we show
some experimental results by using real-world music.

2. Spectrogram of Fluctuated Signal
2.1. Frame Length of STFT Analysis

In short-time Fourier transform (STFT) analysis, frame length
is one of the significant parameters. Since it determines both of
time and frequency resolution, resultant spectrogram represen-
tation would be very different as changing the frame length. In
most signal analysis, one appropriate frame length suitable with
signal of interest is chosen (e.g. typically 20-30ms in speech
analysis). While, our aim here is to capture the fluctuated nature
of singing voice by exploiting multiple spectrograms obtained
from STFT with different frame lengths.

To start with, we consider a case of simple three types of
signals, (1) very stationary sinusoidal wave, (2) a little fluctuat-
ing wave, and (3) non-stationary transient wave (Figure 1 Top).
All three signals have many STFT representations, typically two
STFT representations: STFT with short frame length, and with
long frame length.

Let us think of a case of short frame length. In that case,
the stationary sinusoidal signal can be represented similarly in
neighboring time frames, i.e., it is continuous in time axis direc-
tion, while it is discontinuous in frequency axis direction. The
fluctuating signal can also be represented similarly to the sta-
tionary sinusoidal signal, because the length of frame is short
enough to ignore the fluctuation of the signal. On the other
hand, the transient signal cannot be continuous in time axis di-
rection, while it is continuous in frequency axis direction be-
cause of its impulsive nature. (Figure 1 Middle). Therefore, if
we can define a criterion about those features of sounds, we can
discriminate stationary sinusoidal signal and fluctuated signal
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Figure 1: A concept of STFT representation of three types of signals. (1) Stationary sinusoidal signal can be continuous in time axis
direction, discontinuous in frequency axis direction, on STFT spectrogram domain with both short and long frames (left middle and left
bottom). (2) Fluctuated signal can be continuous in time axis direction, discontinuous in frequency axis direction on STFT spectrogram
domain with short frame (center middle), while it is discontinuous in time axis direction and continuous in frequency axis direction on
STFT spectrogram domain with long frame (center bottom). (3) Transient signal is almost always discontinuous in time axis direction,
and continuous in frequency axis direction, regardless of the length of the frame (right middle and right bottom).

from transient signal.

Next, let us think of a case of long frame length. In that
case, we can describe the stationary sinusoidal signal and tran-
sient signal similarly to the case of short frame length. How-
ever, the fluctuated signal needs to be described in another way.
The fluctuating signal, in this case, cannot be represented sim-
ilarly to the case of short frame length, because the length of
frame is not short enough to ignore the fluctuation, but the ef-
fect of non-stationarity of the signal emerges within a frame
of the spectrogram as broadness of the bandwidth. Besides, be-
cause the signal is fluctuating, a frame of the spectrogram is less
likely to be similar to those of the neighbouring frames. Conse-
quently, the spectrogram of the fluctuated signal is likely to be
less continuous in time axis direction, while it is continuous in
frequency direction because of the broadness of the bandwidth
(Figure 1 Bottom). Therefore, the property of fluctuated sig-
nal is similar to that of transient signal in this case, and we can
discriminate stationary sinusoidal signal from fluctuated signal
and transient signal in a same manner.

2.2. STFT Representation of Singing Voice Signal

Here, we consider a case of music. Assume that we have a
singing voice signal, and let us cut out a 250[ms] segment from
the signal. In this case, because the segment is long enough, the
non-stationarity of singing voice can be covered in a frame, and
the shape of the spectrogram should be wide-band, and the spec-
trogram should be discontinuous in time axis direction. Simi-
larly, let us think about the case of a segment length of which
is 30[ms]. In this case, because the signal can be stationary
enough in the segment, the shape of the spectrogram should be
narrow-band, and continuous in time axis direction.

3. Multi-stage HPSS

3.1. Harmonic/Percussive Sound Separation

The characteristics of those spectral shapes of singing voice can
be detected by an algorithm called harmonic and percussive

sound separation (HPSS)[6]. In this section, we make a brief
introduction of HPSS.

The original purpose of HPSS was to separate a music sig-
nal into “harmonic” components H = {H; ., }o<t<T,0<k<k
and “percussive” components P = {P; . }o<i<T0<k<K,
where t and k are time and frequency indices. More pre-
cisely, the algorithm separates a STFT spectrogram W =
{Whi,wo<t<T,0<k<i into a spectrogram H and P, which are
smooth in time axis direction and frequency axis direction re-
spectively, under a constraint that sum of H and P should be
almost equal to the original spectrogram W,

HPSS is formulated as an optimization problem. The ob-
jective function to be minimized is

T-1 K
1

JH,P] = oy Z Z(\/Ht+1,k — 4/ Ht,k)2
H =0 k=0
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+ IZ(W,H+P), (D

where Z(-) denotes Z-divergence. The first term of the equation
is the log-likelihood function of H: the spectrogram of H is
likely to be smooth in time axis direction. The second term of
the equation is that of P similarly: the spectrogram of P is likely
to be smooth in frequency axis direction. The third term of the
equation constrains sum of H and P to be close to the original
signal W.

The objective function can be optimized by EM-like algo-
rithm. Thus we can separate a spectrogram W into H and P,
ie.,

w 5, Py, )
and by applying inverse STFT to the obtained spectrogram, we
can obtain audible signals h(t) and p(t), as shown in Figure 2.
Note that the length of frame of STFT is arbitrary, and obtained
h(t) and p(t) are not unique, i.e., they also have frame length
li; as a parameter; hy, (t), pi, (t).
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Figure 2: Diagram of a block of HPSS processing.
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Figure 3: Diagram of multi-stage HPSS.

3.2. Multi-stage HPSS

Despite the original purpose of HPSS, the algorithm can sepa-
rate not only “harmonic” and “percussive” components, but also
separate e.g. “singing voice” and “harmonic sounds,” because
of the reason that we described in section 2.

Actually, by adjusting the frame length of STFT, we can
regulate into which a signal is separated, H or P. When we run
HPSS on long-frame STFT domain, singing voice can be sep-
arated into P, while if on short-frame STFT domain, singing
voice can be separated into H, because of the natures of singing
voice mentioned above. Therefore, by applying HPSS like a fil-
ter, we can obtain singing-voice-enhanced signals. We call the
two-stage processing as “multi-stage HPSS.”

The procedure of multi-stage HPSS is as follows: we first
transform the signal by STFT using a long frame /;, and sepa-
rate a signal on the STFT domain,

Wll m {H117Pl1}a 3)

then reconstruct the waveform p1 (t) from P, , and calculate its
STFT using short frames, length of which is [s,

STFTfll STFT,,
Py, Py (1) Py,. “4)

Finally, we separate the signal by HPSS,
Py, 22 {Hy,, P}, ®)
Thus obtained STFTZ_;[Hb] =: hy,(t) is the desired

singing-voice-enhanced signal (Figure 3).  The residual
STFT, '[Hy,] =: hi, (t) and STFT, '[P1,] =: pu,(t) can
be also used for some applications, though we do not use them
in this paper.

4. Experiments

4.1. Singing Voice Enhancement

We applied multi-stage HPSS to real-world musics, e.g.,
LabROSA dataset [7]. The data were 16000kHz monaural PCM
data. The parameters we used were as follows: analysing and
reconstructing window of STFT was sine window (square root
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Figure 4: Spectrograms of input signal, excerpted from
LabROSA dataset [7] (top), singing-voice-enhanced signal
hi, (t) (middle), and singing-voice-suppressed signal h;, (t) +
pi, (t) (bottom).

of hanning window), with half overlapping. This arrangement
satisfies the condition that (STFT~! - STFT) is identical. The
length of frame were 32 [ms] (512 samples) and 256 [ms] (4096
samples).

Figure 4 shows a result of the singing voice enhancement.
Comparing the top spectrogram and the middle spectrogram, we
can see that the singing voice component in middle spectrogram
appears clearer than that of top spectrogram, i.e., the method
suppress the accompanying signals effectively. The bottom
spectrogram is the sum of the residual signals h;, (t) +pi, (¢) in
Figure 3, in which there are little singing voice component, that
shows that the method has a property that the method does not
suppress singing voice component so much.

From our qualitative preliminary experiments, the method
seemed to be effective especially in techno, rock, and pop music
auditorily, and not effective enough in classical music, jazz, and
enka. Besides, sounds of violin and trumpet tended to be rec-
ognized as “singing voice,” and reverberation of singing voice
tended to be recognized as “non-vocal.”



4.2. MIR-related Application: Audio Melody Extraction

As mentioned in the introduction, singing voice enhancement is
related to singing melody pitch extraction technique, and they
can be used as another’s preprocessing mutually. In this section,
we show a result of a singing melody pitch extraction method,
which uses the singing enhancement algorithm as a preprocess-
ing.

The method is comprised of following two stages [8],

1. Apply the singing voice enhancement method.

2. Estimate the pitch contour by a simple tracking algo-
rithm based on dynamic programming.

The method was evaluated in the framework of the Audio
Melody Extraction (AME) evaluation in MIREX (Music Infor-
mation Retrieval EXchange)[9]. Figure 5 shows the excerpted
results from AME evaluation in MIREX 2009 [10] and MIREX
2010 [11], which show that the performance of our method
(TOOS and TOOS1) is high, especially in a condition that the
volume level of melody is relatively low (-5 dB) to accompany-
ing instruments. The figure also shows that the performance of
our method is also comparable to other methods in a condition
that the volume level of melody is relatively high (+5 dB). The
results show the effectiveness of our singing voice enhancement
method as a preprocessing for singing melody pitch extraction.

5. Conclusions

In this paper, we described a novel method to enhance singing
voice based on the fluctuation of the signal. The separation al-
gorithm focused on the discriminative spectral shapes of fluctu-
ated sound: it is continuous in time axis direction and discontin-
uous in frequency axis direction when analysed by STFT with
short frame length, while it is discontinuous in time axis direc-
tion and continuous in frequency axis direction when analysed
by STFT with long frame length. We showed an example of
the result of the method using real-world music signals, and we
also showed the effectiveness of the method as a preprocessing
for an application: Audio Melody Extraction.

Our future works include investigation of an application of
the method related to music information retrieval tasks, combi-
nation with some other music signal processing techniques, and
investigation of an application, based on the residual accompa-
nying signals, e.g., automatic karaoke generator, etc.
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