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Abstract— In this paper, we discuss a new concept ofspecmurt
to analyze multi-pitch signals. It is applied to polyphonic music
signal to extract fundamental frequencies, to produce a piano-
roll-like display, and to convert the saound into MIDI data.

In contrast with cepstrumwhich is the inverse Fourier trans-
form of log-scaled power spectrum with linear frequency,spec-
murt is defined as the inverse Fourier transform of linear power
spectrum with log-scaled frequency. If all tones in a polyphonic
sound have a common harmonic pattern, it can be regarded as
a sum of frequency-stretched common harmonic structure. In
the log-frequency domain, it is formulated as the convolution of
distribution density of fundamental frequencies of multiple tones
and the common harmonic structure. The fundamental frequency
distribution can be found by deconvolution, i.e., by division in
the specmurtdomain.

This ‘specmurt anasylis’ is demonstrated in generation of a
piano-roll-like display from a polyphonic music signal and in
automatic sound-to-MIDI conversion.

I. I NTRODUCTION

In 1963, Bogert, Healy and Tukey introduced a concept of
‘cepstrum’ in a paper entitled “The quefrency alanysis of time
series for echoes: cepstrum, pseudo-autocovariance, cross-
cepstrum, and saphe-cracking” [1]. Later on, this basic idea
was widely applied in signal processing not limited within
analysis of echos. Since Noll [2] used cepstrum in pitch
detection in 1964, it became a standard technique for de-
termination of fundamental frequency. In speech recognition,
Kohda, Nagashima and Sagayama worked out cepstrum-based
speech recognition at NTT Labs in 1978, though this fact
was not officially recorded, and used in the ANSER system
later, the first deployment of speech recognition in public
service. Together with delta-cepstrum proposed by Sagayama
and Itakura in 1979 [3], cepstrum has been the speech feature
most often used in speech recognition in the form of ‘mel-
frequency cepstrum coefficients’ (MFCC) proposed by Davis
and Mermelstein in 1980. Cepstrum was also utilized in speech
synthesis digital filter by Imai and Kitamura in 1978 [5].

In these applications, cepstrum is advantageous in convert-
ing the speech spectrum into a sum of pitch and envelope
components in the cepstrum domain. It is assumed, however,
that cepstrum treats a single signal. Multi-pitch signal can not
be handled by cepstrum due to its non-linearity of logarithm.

Multi-pitch analysis has been one of major problems in mu-
sic sound signal processing. However, fundamental frequency
can not easily be detected from a multi-pitch audio signal, e.g.,
polyphonic music, due to spectral overlap of overtones, poor
frequency resolution and spectral widening in short-time anal-
ysis, etc. Conventionally, various approaches concerning the
multi-pitch detection/estimation problem have been attempted

[8], [9], [10], [11], [12], [13]. Reliable determination of the
number of sound sources is discussed only recently [14].

As for spectral analysis, wavelet transform using the Gabor
function is one of the popular approach to derive short-time
power spectrum of music signals along logarithmically-scaled
frequency axis that appropriately suits the music pitch scaling.
Spectrogram, i.e., a 2-dimensional time-frequency display of
the sequence of short-time spectra, however, is apparently
messed up because of the existence of many overtones (i.e., the
harmonic components of multiple fundamental frequencies),
that often prevents us from discovering music notes.

Our objective is to emphasize the fundamental frequency
components by suppressing the harmonic components so that
the spectrogram will become more similar to the piano-roll dis-
play from which we can see multiple fundamental frequencies
in the display. The motivation of our approach entirely differs
from the standard multi-pitch analysis methods that uniquely
determines the most likely solutions to the multi-pitch de-
tection/estimation problem, in which errors are necessarily
involved. This kind of errors are often unpredictable(e.g.,
recursive solutions depends highly on initial values), that could
be harmful when simply using the detection results for a music
retrieval purpose. The ‘Specmurt Anasylis’, on the other hand,
provides visually similar display to the original piano-roll
image, that may hopefully be one of the useful features for the
retrieval purpose(imagine a simple image template matching
for instance).

As for single pitch detection and extraction, the well-
known cepstrum is the inverse Fourier transform of log-scaled
spectrum along linear frequency axis. In contrast, we use
specmurtthat is the inverse Fourier transform of linear-scaled
spectrum along log-frequency axis. The proposed method was
successfully tested on several pieces of music recordings.

II. ‘C EPSTRUM’ VERSUS ‘SPECMURT’

A. ‘Cepstrum Alanysis’

According to Wiener-Khinchin Theorem, the inverse Fourier
transform of linear power spectrum is autocorrelation as a
function of time delay as follows:

v(τ) =
∫ ∞

−∞
ejτωf(ω)dω, −∞ < τ < ∞ (1)

where f(ω) denotes the power spectrum of the signal. If
power spectrum is scaled logarithmically, the resulted inverse
Fourier transform is not autocorrelation any more and is named
‘cepstrum’ [1], humorously reversing the first four letters in
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Fig. 1. Contrast between cepstrum andspecmurt: specmurtis defined as
inverse Fourier transform of linear spectrum with log-frequency, whereas
cepstrum is inverse Fourier transform of log spectrum with linear frequency.

the spelling of ‘spectrum.’ It is formulated as follows:

c(q) =
∫ ∞

−∞
ejqω log f(ω)dω, −∞ < q < ∞ (2)

where q is called ‘quefrency’ and usually chosen to be an
integer for band-limited spectra.

Analyzing signals in the cepstrum domain is referred to
‘quefrency alanysis’ instead of ‘frequency analysis.’ Similarly,
derivatives of inverse Fourier transform of log-scaled power
spectrum are named ‘gamnitude’, ‘novcolution’, ‘saphe’ and
‘lifter’ by partially reversing the spellings of existing words in
spectrum analysis: magnitude, convolution, phase and filter.

If a signal is produced by a periodic excitation signal of
a single pitch frequency convolved with an impulse response
of linear filter forming the spectrum envelope, they are often
expected to be separate in the quefrency domain. It is useful
in single pitch analysis.

B. ‘Specmurt Anasylis’

Instead of inverse Fourier transform of log-scaled power
spectrum with linear frequency in the cepstrum case, we
can also consider inverse Fourier transform of linear power
spectrum with log-scaled frequency as follows:

s(y) =
∫ ∞

−∞
ejy log ωf(ω)d log ω, −∞ < y < ∞ (3)

or, denotingx = log ω andg(x) = f(ω):

s(y) =
∫ ∞

−∞
ejxyg(x)dx, −∞ < y < ∞ (4)

which we call specmurt [6] reversing the last four letters
in the spelling of ‘spectrum’ respecting the terminology of
cepstrum. Signal analysis in thespecmurtdomain is referred
to ‘specmurt anasylis’ instead of ‘spectrum analysis’ and
‘cepstrum alanysis.’ Specmurt is a function of ‘frencyque’y
instead of ‘frequency’ and ‘quenfrency.’ Manupilation in the
specmurtdomain is referred to ‘filret’ instead of ‘filter’ in the
spectrum domain and ‘lifter’ in the cepstrum domain.

In the next section, ‘specmurt anasylis’ is shown to be ef-
fective in multi-pitch signal analysis in contrast with cepsrum
for the single-pitch case.

TABLE I
TERMINOLOGY IN SPECTRUM, CEPSTRUM[1] AND specmurtDOMAINS

original Fourier Transform of / with
domain log spec / lin freq lin spec / log freq

spectrum cepstrum specmurt
frequency quefrency frencyque
analysis alanysis anasylis

magnitude gamnitude magniedut
convolution novcolution convolunoit

phase saphe phesa
filter lifter filret
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Fig. 2. Relative location of fundamental frequency and harmonic frequencies
both in linear and log scale.

It should be noted that spectrum logarithmically scaled
both in frequency and in magnitude is identical to Bode
diagram often used in the automatic control theory. Its Fourier
transform has no specific name, while it is essentially similar
to mel-scaled frequency cepstrum coefficients (MFCC) and is
very often used in the feature analysis in speech recognition.

III. D ECONVOLUTION OFLOG-FREQUENCYSPECTRUM

A. Modeling Single-Pitch Spectrum in Log-Frequency Domain

For simplicity, we assume that a single sound component is
a harmonic periodic signal.

In linear frequency scale, frequencies of 2nd harmonic, 3rd
harmonic ,· · · , nth harmonic are integral-number multiples of
the fundamental frequency. This means if the fundamental fre-
quency changes by∆ω, then-th harmonic frequency changes
by n∆ω. In the logarithmic frequency (log-frequency) scale,
on the other hand, the harmonic frequencies are locatedlog 2,
log 3, · · · , log n away from the fundamental log-frequency,
and the relative location-relation remains constant no matter
how fundamental frequency changes and is an overall parallel
shift depending on the change (see Fig 2).

Let us define here a general spectral pattern of a sin-
gle sound that does not depend on fundamental frequency.
This definition suggests an assumption of the general model
of harmonic structure that the relative powers of harmonic
components are common. We call this pattern thecommon
harmonic structureand denote it ash(x), wherex indicates
log-frequency. The fundamental frequency position of this
pattern is set to the origin (see Fig 3).

Suppose a functionu(x) is, for example, an impulse (Dirac’s
delta-function) that represents the fundamental frequency posi-
tion on thex-axis and the energy of the fundamental frequency
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Fig. 3. Multi-pitch spectrum generated by convolution of fundamental fre-
quency pattern and the common harmonic structure pattern.

component, we can explicitly obtain a single sound spectrum
by convolving the fundamental frequency locationu(x) and
the common harmonic structureh(x).

B. Modeling Multi-Pitch Spectrum in Log-Frequency Domain

If u(x) contains multiple fundamental frequencies and their
powers as shown in Fig. 3, the multi-pitch spectrumv(x) is
generated by convolution ofh(x) andu(x):

v(x) = h(x) ∗ u(x) (5)

if power spectrum can be assumed additive. (This assumption
holds only in the expectation sense; the power of the sum of
multiple sinusoids of the same frequency may deviate from the
sum of their powers due to their relative phase relationship.)

Eq. 5 also holds ifu(x) is a continuous function represent-
ing the distribution of fundamental frequencies.

C. Deconvolution of Log-Frequency Spectrum

The main problem here is to estimate the fundamental
frequency patternu(x) from the observed spectrogramv(x).
If h(x) is known, we can restoreu(x) by applying the inverse
filter h−1(x) to v(x). It is deconvolution of the observed
spectrumv(x) with the commonharmonic structure pattern
h(x):

u(x) = h−1(x) ∗ v(x). (6)

In the (inverse) Fourier domain, this equation can easily be
computed by the division in thespecmurtdomain:

U(y) =
V (y)
H(y)

, (7)

whereU(y), H(y) and V (y) are the (inverse) Fourier trans-
form of u(x), h(x) and v(x), respectively. This operation is
referred tospecmurt filrettingaccording to the terminology
in Table I. The fundamental frequency patternu(x) is then
restored by

u(x) = F−1[ U(y) ]. (8)

The illustration of this process is briefly shown in Fig 4.
The process is done over every short-time analysis frame and
thus we finally have a time series of fundamental frequency
components, i.e., a piano-roll-like visual representation with a
small amount of computation.

TABLE II
ANALYSIS CONDITIONS FOR LOG-FREQUENCY SPECTROGRAM.

analysis sampling rate 16(kHz)
frame length 64(msec)
frame shift 32(msec)

filter type Gabor function
variance 6.03% [≈100(cent)]
Q-value 8.35% [≈140(cent)]

resolution 12.5(cent)

They domain has been defined as the inverse Fourier trans-
form of linear spectrum magnitude with logarithmic frequency
x.

We have discussed so far on the premise of using the
commonharmonic structure pattern that is common over all
constituent tones and also knowna priori. Even in the actual
situations where this assumption may not strictly hold, this
approach is still expected to play an effective role as a
fundamental frequency component emphasis (or, say, overtone
suppression).

IV. OPTIMIZATION OF COMMON HARMONIC STRUCTURE

A. Wavelet Transform of Input Signal

We use wavelet analysis using Gabor kernel function, as it
provides short-time power spectrum with a constant resolution
along the log-frequency axis. It can be understood as constant-
Q filter bank analysis along the log-scaled frequency axis and
is well suited for the musical pitch scale.

Fig. 6(a) shows an example of wavelet analysis of music
sound performed by an orchestra. In this 5-voice portion of
J. S. Bach’s Ricercare a 6 voci, a flute, 1st and 2nd violins,
a viola and violincello are assigned to the 5 voices. Table II
lists the analysis conditions. We see that overtones (harmonics
components) of individual music tones overlap on each other.
It is quite obvious that finding 5 separate melody lines, i.e.,
trajectories of fundamental frequencies, from this spectrogram
is not at all trivial.

Spectrogram (via wavelet transform) of music signal is usu-
ally messed up with many overtones(harmonics components)
of the individual music notes, that often overlap on each other.
If we are hopefully able to remove the overtone components
as much as possible from the observed spectrogram, a piano-
roll-like visual display of the music signal will be derived, that
may be helpful not only in various music applications such as
signal-into-MIDI converter or automatic music transcription,
but also in music information retrieval.

B. Computational Procedure of ‘Specmurt Anasylis’

The procedure of the ‘specmurt anasylis’ is illustrated in
Fig 4. As shown in this figure, the log-frequency spectrum
is first computed as the constant-Q filter bank outputs using
a wavelet transform of the input music signal. The whole
procedure consists of 4 steps as shown below.

Step 1.Apply wavelet transform with Gabor function to
the input signal and take the squared absolute val-
ues (power-spectrogram magnitudes)v(x) for each
frame.
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Fig. 4. The outline of the “specmurt anasylis” to find fundamental frequencies.

Step 2.Apply inverse Fourier transform tov(x) to obtain
V (y).

Step 3.Divide V (y) by H(y), the inverse Fourier transform
of the assumed common harmonic patternh(x).

Step 4.Fourier transform the divisionV (y)/H(y) to esti-
mate the multi-pitch distributionu(x) along the log-
frequencyx.

One interesting aspect ofspecmurt anasylisis that wavelet
transform is followed by inverse Fourier transform whereas
wavelet transform is usually followed by inverse wavelet
transform, or Fourier transform is as well usually followed
by inverse Fourier transform.

C. Optimizing the Common Harmonic Structure

In the above procedure of ‘specmurt anasylis,’ we assumed
that all constituent sounds have a common harmonic structure.
It is, however, generally not true in real polyphonic music
sounds as the harmonic structures are generally different from
each other and they often change over time. The best we can
do is to give a best compromise ofh(x) to minimize the
amplitudes of subharmonics (overtones) after deconvolution
(by ‘filretting’) in the specmurtdomain. This situation is
somewhat similar to ceptrum-based pitch extraction where
‘lifter’ should often be empirically adjusted to separate pitch
and formant components in the ‘quefrency’ domain.

Figure 5 (a) shows an example of the linear-scaled spectrum
of mixture of two violin sounds (C4 and E4) along log-
scaled frequency axisx where multiple peaks represent two
fundamental frequencies as well as overtones. Using1/

√
f

as the frequency characteristics ofh(x) where f denotes
frequency, the overtones are suppressed in Figure 5 (b) while
unnecessary spectrum components appear as the result of
deconvolution. On the other hand, using1/f , suppression of
overtones is insufficient in Figure 5 (c).

To automatically adjusth(x), we consider an iterative proce-
dure to find the optimalh(x) that gives maximum suppression
of subharmonic components. Applying a non-linear mapping
to the estimated fundamental frequency distribution,u(x), we
can suppress relatively smaller values ofu(x) while keeping
relatively large values same, to obtain̄u(x) as the mapped
result. Then, we can derivēh(x), an improvedh(x) to match
ū(x) in the least squares sense, by minimizing an objective
function:

D =
∫ ∞

−∞

{
v(x)− h̄(x) ∗ ū(x)

}2
dx (9)
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Fig. 5. Multi-pitch extraction with optimized common harmonic structure.

The procedure of ‘specmurt anasylis’ is repeated to obtain
an yet improvedu(x) using the improved common harmonic
structureh̄(x). The whole procedure is relatively simple as
h(x) has non-zero values at its fundamental and harmonic
frequencies.

A practical procedure for this purpose is as follows:
Step 1. Obtain ū(x) by applying a non-linear mapping

utilizing a sigmoid function:

ū(x) =
1

1 + exp
{−α

(
u(x)− β

)}u(x) (10)

where sigmoid parametersα andβ are chosen based
on the distribution of values ofu(x).

Step 2.Find h̄(x) at N discrete points{x1, x2, · · · , xN}
(N is the number of subharmonics to consider and



TABLE III
SOUND-TO-MIDI CONVERSION ACCURACY(%)

Title Instrument Genre
Composer Correct
/ Player Rate(%)

“Jive” Piano Jazz M. Nakamura 77.8
“Lounge Away” Piano Jazz T. Nagai 78.4
“Jive” Guitar Jazz H. Chubachi 77.6
“For Two” Guitar Jazz H. Chubachi 76.9
“Crescent Serenade”Guitar Jazz S. Yamamoto 74.5
“Abyss” Guitar Jazz H. Chubachi 72.0
Nocturne No. 2,

Piano Classical F. Chopin 80.4E[ major, op. 9-2

xk = x1 + log k) by calculating{h1, h2, · · · , hN}
through the following equations:

aj,k =
∫ ∞

−∞
u(x− xj)u(x− xk)dx (11)

bj =
∫ ∞

−∞
{v(x)− u(x)}u(x− xj)dx(12)
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(13)
Step 3.Replaceh(x) with h̄(x), repeat the ‘specmurt an-

sylis’ procedure and go to Step 1.

An example of iterative optimization of common harmonic
structure is shown in Fig. 5. After 5 iteration of the above
procedure starting from initialu(x) either in Fig. 5(b) or (c),
the same converged result was obtained as shown in (d).

V. EXPERIMENTS

A. Visualization of Fundamental Frequencies

Specmurt anasyliswas experimentally tested on 16kHz-
sampled monaural polyphonic music signals from the RWC
music database[15].

An example of the ‘specmurt anasylis’ results are shown
in Fig. 6, in which we can see the overlapping overtones
in (a) is significantly suppressed by ‘specmurt anasylis’ in
(b) and is very much like the manually prepared piano-roll
references in (c). In this analysis, the envelope of the common
harmonic structureh(x) was assumed to be1/f (the n-th
harmonic component has a energy ratio of1/n relative to
the fundamental frequency component) following an a priori
knowledge that natural sounds tend to have ‘1/f ’ spectral
characteristics.

B. Sound-to-MIDI Conversion

Once the fundamental frequencies are found for each frame,
they can be converted to MIDI(Musical Instrument Digital
Interface)-format data through quantization of fundamental
frequencies into music tone names.

Table III shows the conversion accuracy for several music
pieces excerpted from a common music database [15]. The
conversion accuracy was calculated by counting differences

between the MIDI data and the handcrafted MIDI as the
reference associated with the music signal data.

VI. CONCLUSION

We discussed a novel non-linear signal processing technique
called ‘specmurt anasylis’ which is parallel to ‘cepstrum alan-
ysis’. In this new domain, multiple fundamental frequencies
of polyphonic music signal are detected by ‘filretting’ in the
specmurtdomain and displayed in a piano-roll-like display. An
iterative optimization of common harmonic structure was also
devised and used in sound-to-MIDI conversion of polyphonic
music signals.

Our future work includes generalization of ‘specmurt ana-
sylis’ for complex spectra to define yet another homomorphic
signal processing similar to complex-cepstrum-based signal
processing, providing initial values for precise multi-pitch
analysis based on harmonically-constrained Gaussian mixture
models[13], [14], application to automatic transcription of mu-
sic (sound-to-score conversion) by combining with the rhythm
transcription technique[16], music performance analysis tools,
and interactive music editing/manipulation tools.
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