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ABSTRACT

In environment with considerably long reverberation time, each
frame of speech is affected by energy components from the
preceding frames. Therefore, to adapt parameters of a state
of HMM, it becomes necessary to consider these frames, and
compute their contributions to current state. However, these
speech frames preceding to a state of HMM are not known
during adaptation of the models. In this paper, we propose to
use preceding states as units of preceding speech segments,
estimate their contributions to current state in maximum like-
lihood manner, and adapt models by accounting their con-
tributions. When clean models were adapted by proposed
method for a speaker-dependent isolated word recognition task,
word accuracy of the system typically increased from 67.6%
to 83.2%, and from 44.8% to 72.5%, for channel distorted
speech simulated by linear convolution of clean speech and
impulse responses with reverberation time (T60) of 310 ms
and 780 ms, respectively.

1. INTRODUCTION
Automatic speech recognition (ASR) systems, though usu-
ally trained with clean speech, have to operate under real-life
condition, which includes hands-free communication (with
far-field microphone), reverberant rooms, and telephone net-
works. Convolutional distortion caused by channel character-
istics or reverberation in such environment can severely de-
grade the performance of the system, and can make it com-
pletely useless for any practical purpose. Therefore, any prac-
tically usable system must be able to cope with such convo-
lutional distortion present in speech. A number of techniques
have been developed over years to deal with such distortion,
ranging from front-end methods to several model-based ap-
proaches.

Front-end methods include inherently robust and enhance-
ment based techniques. Inherently robust techniques focus
on distortion-resistant features and distance measures. Chan-
nel normalization techniques like Cepstrum Mean Subtrac-
tion (CMS) [1] and RASTA [2] have been proved effective
to improve the performance of the system. Time derivatives
of cepstra [3] have been very effective to improve recogni-
tion rate under noisy and reverberant condition, as well as
under clean environment. Probabilistic signal bias estimation
and removal technique [4], which iteratively estimates bias by
maximizing likelihood of speech model, was also proposed.
Enhancement-based techniques, on the other side, essentially
attempt to transform distorted speech parameters into clean
speech parameters. Such techniques include inverse filtering
and various microphone-array based techniques. Codeword-
dependent cepstrum normalization (CDCN) [5] has been also
proved effective for recognition of speech from far-field mi-
crophone.

Model-based approaches, on the other hand, attempt to
transform clean speech models to distorted ones, thus reduc-
ing the mismatch between training and testing environment.
Parallel model combination (PMC) [6], though mostly popu-
lar for compensating additive noise, has been used to compen-
sate for convolutional distortion as well, by estimating convo-
lutional noise component from adaptation data and general-
ized speech model. Similarly, universal adaptation method
[7] compensates for channel distortion along with additive
noise by maximizing likelihood of adaptation data in log-
normal domain. Compensation to convolutional distortion
has been considered in vector Taylor series (VTS) [8] and
other polynomial based approaches as well. Other general
model based techniques that have been proved effective for
adapting models for channel distorted speech include maxi-
mum likelihood linear regression (MLLR) [9] and maximum
a posteriori (MAP) [10] estimation.

Though these methods have been proved to improve the
performance of ASRs, most of them cannot perform well when
reverberation time is much longer than analysis window-length.
However, reverberation time longer than 100 ms is not un-
common [11] in real-life environment, e.g., in office rooms.
Feature-based methods like inverse-filtering and RASTA-PLP,
despite their own limitations, have been more considerate of
long convolutional distortion than most of the popular and
successful model based approaches like PMC, VTS, universal
adaptation and others, where compensation to convolutional
distortion is generally based on a single state, without explic-
itly considering effect from preceding states or speech seg-
ments. Some of the model based approaches that explicitly
consider the effect of preceding speech segments for adapta-
tion include first-order linear prediction [12] and our previous
work [13] based on state-splitting. In [12], energy compo-
nent from preceding frames is estimated by first order linear
prediction from (single) last frame of observation, and mod-
els are adapted at each frame, which is computationally very
expensive and inefficient. In our previous work [13], we pro-
posed a state splitting approach to estimate preceding frames
for a given state of HMM, which are used to compensate pa-
rameters of the state by convolving with channel parameters.
However, the method needs stereo data for estimating chan-
nel parameters. Besides, model structure is changed and large
number of states are introduced in the system making it quite
complex and inefficient for decoding.

This work is also a model-based approach and it consid-
ers adaptation for long channel distortion, when reverberation
time (T60) is much longer than analysis window length. In
this work, we model energy component contributed by pre-
ceding speech segments in terms of preceding states, and es-
timate amount of their contributions in maximum-likelihood
manner from adaptation data. Only few seconds of distorted
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Fig. 1. HMM Adaptation: To compensate state output S(j)
at state qt = j for long convolutional distortion, knowledge of
clean observations at frames t−1, t−2 and so on is necessary.

speech is required without demanding stereo recordings; and
besides that, the method is flexible for simultaneously com-
pensating additive noise as well.

2. EFFECT OF LONG CONVOLUTIONAL
DISTORTION

Convolutional distortion in speech is modeled as filtering of
clean speech signal s[m] by channel characteristics (impulse
response) h[m], such that distorted speech o[m] in time-domain
is given as h[m] ∗ s[m] (where m is sample number, and ∗
represents convolution in time domain).

When reverberation time T60 of h[m] is much shorter than
window-size used for short-time Fourier transform (STFT),
STFT of distorted speech is given as

O(wk, t) ≈ H(wk, t)S(wk, t) (1)

where t is frame number andwk represents discrete frequency.
Parameters S(wk, t) and H(wk, t) are STFTs of clean speech
s[m] and impulse response of channel h[m], respectively.

However, when reverberation time T60 is much longer
than window-size, such a relationship is no more valid, and
STFT of distorted speech is usually approximated by

O(wk, t) ≈ H(wk, t) ∗ S(wk, t). (2)

In other words, with long reverberation time, the distor-
tion is no more of multiplicative nature in linear spectral do-
main, rather it is convolutional.

3. ACCOUNTING CONVOLUTIONAL DISTORTION

Eq. 2 can be rewritten by limiting convolution up to finite
length L, as

O(wk, t) ≈ H(wk, 0)S(wk, t) +H(wk, 1)S(wk, t− 1)

+ . . .+H(wk, L− 1)S(wk, t− L+ 1). (3)

Eq. 3 shows that the spectral parameters of distorted speech
at frame t do not depend only upon this frame, but also upon
the preceding clean frames at t − 1, t − 2 and so on. From
model-domain perspective, this implies that compensated out-
put distribution Ô(j) at state qt = j of given HMM [Fig. 1]
depends upon the clean observations at frames t−1,t−2 and
so on, which are not known in any case (whether front-end
methods or model-based approach).

Besides, model adaptation being considered is not decoding-
time, which means that models are adapted once, without
even using incoming distorted observations, and used until
channel characteristics changes significantly. In such case,
nothing can be inferred deterministically about the frames of
clean observations that will precede to a given state of HMM,
and even the most likely state occupations cannot be known.

However, states (but not their exact occupations) preced-
ing to a given state can be known up to some extent, from
the structure of models and given contexts (like triphones or
biphones). For example, while adapting state 2 of HMM in
Fig. 2, we know that state 1 of the model will precede it, and
beyond that states of its left context will occur. Therefore, we
propose to model the frame-level convolutional distortion as
given in Eq.3, directly in terms of these preceding states, such
that distorted speech parameters at state j are represented by
filtering of states (or state-level convolution), as

Ô(j) = α0S(j) +α1S(j − 1) +α2S(j − 2)

+ . . .+αN−1S(j −N + 1) (4)

where S(j) is parameter of state j of clean speech models
(please see Fig. 2 for interpretation of j) and αi is state-level
filter coefficient (cf. frame-level filter coefficientsH(wk, t) of
Eq. 3). Separate equations in terms of mean and covariance
matrix are defined later in Eq. 11 and 12. Left contexts of
models can be used to account the effect of preceding models;
in their absence, only the available preceding states of current
model can be used. Eq. 4 with only first term on the right-
hand side and parameters representing means can be seen as
similar to MLLR mean compensation (without bias term).

Representing convolutional distortion directly in terms of
preceding states can be regarded as considering effect of pre-
ceding blocks of frames (represented by each state) on current
state rather than of individual frames. As such ’blocks’ will
be of variable size, estimation of optimal values of state-level
filter coefficients are important so that they can be applied
over different states. The next section describes their estima-
tion from few seconds of distorted speech data by maximum
likelihood approach.

4. MAXIMUM-LIKELIHOOD ESTIMATION OF
STATE-FILTER COEFFICIENTS

Corrupted speech model λO is composed by using state-level
channel parametersA = {α0, . . . ,αi, . . . ,αN−1} and clean
speech models λS . Parameter αik (k : dimension of speech
parameter) is estimated by maximizing Viterbi-likelihood score
P (O, q|A, λS) orP (O, q|λO) of adaptation observationO =
{o1, . . . ,oT } over most likely state sequence q = {q1, . . . , qT }
given by Viterbi algorithm, as

α̂ik = argmax
αik

P (O|α0,...,N−1, λS). (5)

Maximization of P (O, q|A, λS) is done in iterative man-
ner by steepest-descent method, by defining new estimate of
αik at pth iteration as

αik(p) = αik(p− 1)

+ ε
∂ log

(

P (O|α0,...,N−1, λS)
)

∂αik
(6)

where ε is scaling factor.
Computation of likelihood P (O, q|A, λS) (and its maxi-

mization) is done using cepstrum domain parameters, whereas
composition of corrupted speech model λO by using λS , A
and additive noise (when considered) is done in linear-spectral
domain, under PMC framework [6]. Therefore, such esti-
mation involves conversion of parameters between these do-
mains at each iteration. The parameters in cepstrum, log and
linear spectral domains are specified by subscript cep, lg and
lin, respectively.



Transformation of models from cepstrum-domain to log
spectral domain is done as

µSlg = C−1µScep (7)

Σ
Slg = C−1

Σ
Scep(C−1)T (8)

whereC is the discrete Cosine transform (DCT) matrix. These
parameters in log spectral domain are further transformed to
linear spectral domain, by using

µSlin

k = exp

(

µ
Slg

k +
Σ
Slg

kk

2

)

(9)

ΣSlin

kl = µSlin

k µSlin

l

(

exp(Σ
Slg

kl )− 1
)

(10)

where k and l are parameter indices.
In linear spectral domain, model for reverberant speech is

composed by using clean speech model and estimated αik as

µOlin

k (j) = α0kµ
Slin

k (j)

+ α1kµ̄
Slin

k (j − 1) + α2kµ̄
Slin

k (j − 2)

+ . . .+ αN−1,kµ̄
Slin

k (j −N + 1) (11)

ΣOlin

kl (j) = ΣSlin

kl (j) (12)

The covariance matrix can be retained unchanged as in Eq. 12.
Also, for adaptation of means, only composite mean (shown
by overbar) of preceding states from single component distri-
bution corresponding to Gaussian mixture model of their out-
put distributions are used. Such single component composite
distribution from M-mixture GMM can be obtained as

µ̄cep =

M
∑

m=1

cmµm,cep (13)

Σ̄cep =

M
∑

m=1

cm
(

Σm,cep + µm,cepµ
T
m,cep

)

− µ̄cepµ̄
T
cep (14)

where m represents mixture component, and cm is mixture
weight.

Once the models are adapted in linear spectral domain,
they are transformed back to log spectral domain by using

µ
Olg

k = log(µOlin

k )−
1

2
log

(

ΣOlin

kk

µOlin

k

2
+ 1

)

(15)

Σ
Olg

kl = log

(

ΣOlin

kl

µOlin

k µOlin

l

+ 1

)

, (16)

and to cepstrum domain by using

µOcep = CµOlg (17)

Σ
Ocep = CΣOlgCT . (18)

Such formulations for transformation of parameters from
one-domain to another and composition of models are used
while estimating αik as well. We use similar approach as in
[7] to maximize likelihood and estimate filter coefficients αik.
As under large mixture GMMs, estimation of αik becomes
complex, they can be first reduced to single-component dis-
tribution using Eqs.13 and 14 and used while estimating αik.

The new estimate for αik, for single-mixture case, is given by

αik(p) = αik(p− 1)

+ε
∂

∂αik

∑

∀t

(

−
1

2
log
(

(2π)D | Σ
Ocep

t |
)

−
1

2
(Ot − µ

Ocep

t )TΣ
O−1

cep

t (Ot − µ
Ocep

t )

)

(19)

where {(µ1,Σ1), . . . , (µT ,ΣT )} corresponds to output dis-
tributions of most likely state-sequence decoded by Viterbi
algorithm. Ignoring the change in covariance w.r.t. αik gives

αik(p) = αik(p− 1)

+ ε
∑

∀t

(

1

2

∂µ
Ocep

t

T

∂αik
Σ
O−1

cep

t (Ot − µ
Ocep

t )

+
1

2
(Ot − µ

Ocep

t )TΣ
O−1

cep

t

∂µ
Ocep

t

∂αik

)

(20)

= αik(p− 1)

+ ε
∑

∀t

(

1

2

(

C
∂µ

Olg

t

∂αik

)T
Σ
O−1

cep

t (Ot − µ
Ocep

t )

+
1

2
(Ot − µ

Ocep

t )TΣ
O−1

cep

t C
∂µ

Olg

t

∂αik

)

. (21)

The term ∂µ
Olg

t /∂αik (each kth component represented as
∂µ

Olg

k (j)/∂αik, where j is aligned state to frame t of adapta-
tion data) can be obtained by taking derivative of Eq. 15 as

∂µ
Olg

k (j)

∂αik
=

µSlin

k (j − i)

µOlin

k (j)

+
ΣOlin

kk (j)µSlin(j − i)

µOlin

k (j)ΣOlin

kk (j) +
(

µOlin

k (j)
)3
. (22)

While also considering additive noise, mean and covari-
ance matrix terms for it can be included in Eqs. 11 and 12, and
can be estimated together, or if already estimated (e.g. using
signal during non-speech activity), they can be used during
estimation of αik. Once estimates of αik are obtained from
adaptation data, they are used to transform all clean models
to corrupted speech models. The procedure is also depicted
in Fig. 2.

5. EVALUATION

The proposed method was evaluated on a speaker-dependent
isolated word recognition task. Clean speech HMMs were
trained with 2620 words of the same speaker taken from ATR
speech database A-Set. Clean speech HMMs comprised of
425 context-dependent biphone models with left-context, each
with three emitting states single mixture Gaussian model. The
speech signal was single channel with sampling frequency of
16 kHz. The speech signal was analyzed with Hamming win-
dow of 25 ms window-size and frame shift of 10 ms into 13-
dimensional MFCC feature vectors including 0th-order coef-
ficient, using 24 mel filter-banks. The test set consisted of 655
words of the same speaker taken exclusively from the ATR
speech database A-set, and HTK 3.1 was used as decoder.



Viterbi BestPath
Likelihood

Estimate 

Adapt Model

Converged?

1 2 3

1 2 31 2 3

Adapt
All Models

Given Clean HMMs

yes

no

Cepstrum-domain

Linear -Spectral domain

Adapted HMMs

Clean HMMs transformed to linear-spectral domain

Left-context

Estimation of Reverberation Parameters

jj-1j-2j-3j-4

α

Observation
for Adaptation

α

1 2 3 1 2 3

(1)

(2) (3)

(4)

(5)

iterate

(i)

(ii)

(iii)

(iv)

(v)

Fig. 2. Adaptation of model parameters for long convolutional distortion by maximum-likelihood state-filtering (MLSF)

Table 1. Experimental Results (Word Recognition Rate %)

Data T60 Clean CMS MLLR MLSF(N=4)

Clean − 97.9 97.6 97.9 97.9
E1B 310 ms 67.6 77.3 73.3 83.2
OFC 780 ms 44.8 47.5 49.0 72.5

For evaluation, convolutional distortion was simulated by
convolving clean speech with impulse responses of the envi-
ronment (viz. E1B and OFC) taken from RWCP Sound Scene
Database in Real Environment. Recognition performance of
distorted speech was evaluated with CMS and MLLR as well.
For CMS, models were retrained with CMS performed train-
ing set data, and evaluation was done with CMS applied test
set. For MLLR, global transformation matrix was estimated
from adaptation data and used to adapt means. The result with
MLLR varied with amount and phonetic coverage of adapta-
tion data; the listed result in Table 1 is for 30 words of cor-
rupted speech used as adaptation data. To evaluate the pro-
posed maximum-likelihood based state filtering (MLSF) ap-
proach, only ten words of distorted speech was used as adap-
tation data to estimate αik with filter-order of N = 4, and
states of left-context from biphones were considered for the
adaptation.

Experimental results as listed under Table 1 show bet-
ter performance of MLSF approach which demonstrates its
effectiveness for convolutional distortion. The improvement
has been obtained by using smaller amount of adaptation data
than MLLR, and with longer reverberation time, the improve-
ment with MLSF approach is more pronounced compared to
other methods.

6. CONCLUSION
In this paper, we proposed state filtering based model adapta-
tion technique for convolutional distortion with considerably
long reverberation time. The filter coefficients are estimated
by using maximum-likelihood approach, using small amount
of adaptation data. The experimental result shows the effec-
tiveness of the method for improving performance of the sys-
tem for long convolutional distortion.

Future work includes evaluation of the method on large
vocabulary continuous speech recognition (LVCSR) task with
large Gaussian mixture models. Its capability to track and
adapt to dynamic channel characteristics will be also investi-
gated.
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