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Abstract—We designed variable length code for the vector
quantization (VQ) gain parameter of the Algebraic Code-Excited
Linear Prediction (ACELP) speech coding scheme, aiming at
reduction of bit rate and distortion in the environment of IP
communication. The code index is selected taking both quantiza-
tion distortion and average code length into consideration. The
VQ tables has been trained by the algorithm based on Entropy-
Constrained VQ (ECVQ). It has been shown that this scheme
can keep the quality and reduce the average bit rate by 0.2 kbit/s
when applied to the state-of-the-art speech coding standard ITU-
T G.718.

I. INTRODUCTION

In recent years, the number of worldwide mobile phone
connections has exceeded five billion, which indicates that
many people use mobile phones as tools for communication.
However, there is still a demand for higher speech quality of
telephone calls.

For speech coding, Linear Prediction Coding (LPC) is gen-
erally used, by which the coefficients of LPC are transmitted
efficiently. On the other hand, for the coding of residual signals
of LPC, Code-Excited Linear Prediction (CELP) [1], [2] is
widely used, by which residual signals are vector-quantized in
the time domain. In the encoder using this method, Analysis
by Synthesis (AbS) is carried out, which reconstructs speech
using the code vectors of a codebook and selects the code vec-
tor that minimizes the distortion of the reconstructed speech.
Though this method, which has no constraints for construction
of a codebook, should reduce distortion, it requires memory
capacity for a codebook and computation for a search.

Most speech coding standards, including G.718 [3] for
traditional mobile communications, specify Algebraic Code-
Excited Linear Prediction (ACELP) [2], [4] for the coding of
LPC residual signals. This system uses an adaptive codebook,
which was originally used in Self-Excited Linear Prediction
(SELP) [5]. This codebook aims for a reduction of memory
capacity by using residual signals in a previous frame. Besides
the adaptive codebook, an algebraic codebook is used in order
to modify the adaptive codebook. This codebook consists of
some pulses each of which is placed approximately every 10
sample points, and is generated by a rule. Thus, the memory
capacity is almost negligible.

ACELP has been highly tuned to reduce perceptual dis-
tortion and to ensure robustness against transmission channel
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Ŝ

Fig. 2. Model of excitation signals.

errors. Thus, traditional ACELP schemes intentionally avoid
variable length coding of parameters, which is extremely
fragile due to bit errors.

All future telephone communications, however, (including
mobile phones) will make use of IP networks, where com-
pressed speech codes are carried in a payload. Future speech
coders for IP communications will therefore not have to be
concerned about bit errors in payloads. It is important to try to
use any tools available to eliminate redundancy, even if they
are not robust against bit errors. To optimize the gain table
with both speech distortion and code length as criteria, we
propose a design method that considers the relation between
distortion and code length by means of an algorithm based on
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entropy-constrained vector quantization (ECVQ) [6] instead of
the commonly used VQ [7].

In section II, we explain the outline of the ACELP system
used in G.718. In section III, we describe the algorithms for
VQ and ECVQ. In section IV, the coefficients for transforma-
tion from distortion to code length are derived theoretically.
Finally, in sections V and VI, we show how we design ECVQ
tables and present an evaluation of speech quality.

II. ACELP SYSTEM IN G.718

In the G.718 system, there are four encoding modes for
12-kbps encoding. Two of them are the Voiced-Coding (VC)
mode and the Generic-Coding (GC) mode. The VC mode en-
codes voiced sounds that have much stationarity or continuity,
and the GC mode encodes other various voiced sounds. As
shown in Fig. 1, Linear Prediction Analysis is carried out for
each frame (20-ms long), and encoding modes are switched
on each frame. On the other hand, predictive residual signals
are encoded for each sub-frame (5-ms long) since the residual
signals vary faster.

In ACELP, residual signals are expressed in the form of a
linear combination of an adaptive codebook and an algebraic
codebook (Fig. 2). The gain of these codebooks is calculated
so that the mean-squared weighted error between a decoded
speech signal and a target speech signal is minimized. The
error is given by

d(S, Ŝ) = ∥Ŝ− S∥2

= ∥αA+ βB− S∥2 , (1)

where S = (s1, s2, · · · , s64) is the target vector, Ŝ is the
reconstructed vector, A is the filtered adaptive code vector,
B is the filtered algebraic code vector, and α and β are the
gains of each code vector.

The adaptive and algebraic gains are jointly vector-
quantized using a 5-bit codebook table (Fig. 3). In G.718, be-
cause 5-bit fixed-length coding is assumed, the gain codebook
table is designed to minimize only speech distortion. However,

in VoIP, taking into consideration not only distortion but also
average code length is expected to be effective.

III. VECTOR QUANTIZATION

In this section, we first describe the Linde-Buzo-Gray
(LBG) algorithm [7], which is generally used for VQ design.
Then, we present ECVQ algorithm, which this paper use to
design codebooks.

A. LBG algorithm

VQ is a quantization method that replaces each sample of
multidimensional continuous data with one of the finite sets
of code vectors.

For training a vector-quantized codebook, the LBG algo-
rithm is used generally. This algorithm executes alternate
repetitions of the k-means algorithm and division of code
vectors. First, the code vector that minimizes a sum total of
the distortion of all samples is found. Then this code vector is
divided into two slightly separated code vectors. Subsequently,
following the k-means algorithm, a code vector that minimizes
distortion is assigned to each sample, then the code vectors
are updated so that a sum of the distortion in each cluster is
minimized, and these two processes are run iteratively. When
the sum total of distortion of all samples converges, each
code vector is divided again into two. After that, the k-means
algorithm and division of code vectors are repeated in the same
way.

B. Entropy-Constrained Vector Quantization

While the quantizer in the LBG algorithm is designed to
minimize only distortion, average code length also plays an
important role as mentioned above. ECVQ offers a quantizer
based on the criteria of both distortion and average code
length. Though the framework of ECVQ follows the k-means
algorithm, ECVQ differs from LBG algorithm in some aspects.

First, the VQ table of intended size by the LBG algorithm is
set as an initial table, and then iterative computation is carried
out by an algorithm similar to the k-means algorithm. In the
process that selects the best code vector for each sample, the
distance function consists of not only distortion but also of the
code length of each code vector in the case of variable coding,
as folllows:

d∗(i) = d(i) + λ · l(i) , (2)

where i is an index of the codebook and l(i) is code length
of the index. Then, the code vector that makes less distortion
and has shorter code length is selected.

Another difference from the LBG algorithm is that code
lengths have to be updated in each iterative process. Each
time the best code vector for every sample is assigned, the
frequencies of code vectors are calculated. On the basis of
the information about the frequencies, the code length of each
code vector is calculated.

However, the LBG algorithm needs to calculate code length
in each iterative process (e.g., using Huffman algorithm), so
the computational complexity is high in an actual training
process. Then, for simplicity, code vectors are allowed to have
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noninteger code lengths, and the amount of information about
each code vector is used as an approximate value of code
length:

d∗(i) = d(i) + λ · l(i)
≃ d(i) + λ {− log2 p(i)} . (3)

It has been shown that the system with this approximation
produces a system whose performance is nearly identical to a
system that includes the Huffman algorithm within the loop
[6].

In the process that updates a centroid of each cluster, the
vector that minimizes the total distortion in the cluster is
calculated as a centroid in the same way as the LBG algorithm.

Defining the distance function in the form of the sum of
distortion and code length decreases the performance function
monotonically in each process. Thus, using the ECVQ algo-
rithm, a quantizer can be designed by using both distortion
and code length as criteria.

However, in this distance function two elements that have
different dimensions are added, and the relation between
distortion and code length is not considered. It therefore can
not be necessarily said that an optimal quantizer is obtained
from the view point of distortion and code length.

IV. DESIGN OF QUANTIZER CONSIDERING THE RELATION
BETWEEN DISTORTION AND CODE LENGTH

In order to optimize distortion and code length simultane-
ously, the relation between distortion and code length should
be considered.

First, let us suppose a case of scalar quantization to simplify
the problem. When the quantization level is ∆, and data are
uniformly distributed, the mean square error is expressed as

d̄ =

∫ ∆
2

−∆
2

q2
dq

∆
=

1

12
∆2 . (4)

Therefore, when b bits are added, the quantization level is
2−b∆, and the mean square error decreases by a factor of
2−2b. Then, the distortion for b bits, Db, is as follows:

Db = 2−2bD0 . (5)

where D0 is the distortion for 0 bit.
The residual signals, which this research actually deals

with, are vectors. When there is no correlation between the
dimensions of each vector, it would be appropriate to assume
that b bits are distributed equally among N dimensions. (It
can be found that there is not much difference even if it is
assumed that b bits are given to only one dimension.) Then,
the distortion for b bits is as follows:

Db = 2−2 b
N D0 . (6)

Then, the logarithm of ratio of the distortion is

log10
Db

D0
= log10 2

−2b
N

= − 2

N
log10 2× b

= −λb . (7)

※Each bold line (8.17 / 5.11) denotesseg. SNR without quantization
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Fig. 4. seg. SNR and average code length using ECVQ table.

Code length can be transformed into distortion as a linear
expression in this equation. It is therefore thought that opti-
mization in terms of both distortion and code length can be
achieved by adding this λb as a term of a penalty for code
length in a distance function. Therefore, the distance function
should be described newly as

log10 D
∗ = log10 D + λl(i) , (8)

where l(i) is code length of a code vector whose index is i.
Besides, the standardized squared error between the target

speech and speech reproduced by a code vector should be
used as distortion in the distance function instead of a simple
square distance between code vectors, because the geometric
distance between code vectors does not necessarily correspond
to speech quality:

D(S, Ŝ) =
∥Ŝ− S∥2

∥S∥2
=

∥αA+ βB− S∥2

∥S∥2
(9)
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Fig. 5. PESQ evaluation results and average code length with 95% confidence interval.

where S is the target speech vector, Ŝ is the decoded speech
vector, A is the decoded signal of the adaptive codebook, B
is the decoded signal of the algebraic codebook, and α and β
are the gains of the two codebooks respectively.

Accordingly, the dimension of a vector in the transformation
coefficient λ should correspond to the distortion. As the length
of a speech vector per sub-frame is 64, 64 is substituted for
N in λ so the λ is calculated to be 0.009.

V. TRAINING OF ECVQ TABLE

In this section, we present the experiments for training the
gain parameters of ACELP in G.718 using the design method
described in the previous section. The purpose is to verify that
code vectors can be optimized in terms of both distortion and
code length and that less distortion and shorter code length
than G.718 can be achieved.

In G.718, VC and GC modes are constrained to use common
code vectors in case of code errors. However, in VoIP that con-
straint is unnecessary, and the histograms of gain parameters
in VC and GC modes are actually very different. We therefore
trained code vectors for VC and GC modes individually. And
for a wide range of comparison between the ECVQ code
vectors and G.718 code vectors, we trained 4, 5 and 6 bit
size codebooks for VC and GC modes respectively.

We trained the code vectors using 10 steps of λs for each
mode, the values of which were around the theoretical value
of λ:

λm = 2× 10−3m (m = 0, 1, 2, · · · , 9) (10)

The training data were about 3 hours of clean/noisy speech
data consisting of several languages and a cappella song about
3 minutes long. The test data were about 40 minutes of
clean/noisy speech data.

VI. EVALUATION OF SPEECH QUALITY

A. Segmental SNR evaluation

The evaluation results are shown in Fig. 4. The horizontal
axis shows Huffman code length, and the vertical axis shows
the values of the Segmental Signal to Noise Ratio (seg. SNR).
The seg. SNR is the average of the SNR values in all samples;

seg. SNR = 10 log10
∥S∥2

∥Ŝ− S∥2

= 10 log10
∥S∥2

∥αA+ βB− S∥2
. (11)

It is desirable that the ECVQ plots have a higher seg. SNR
and shorter code length than G.718. Fig. 4 shows that, using
ECVQ code vectors, higher seg. SNR values and shorter code
lengths than those in G.718 can be obtained.

B. Objective evaluation

The above results show that the ECVQ algorithm achieves
higher seg. SNR values of speech, Next, to evaluate the quality
as speech more precisely, we conducted objective evaluation
experiments of speech quality. We used the Perceptual Eval-
uation of Speech Quality (PESQ) [8] as a measure, which is
widely used for evaluations of speech quality. The range of
the PESQ value is -0.5 to 4.5. The higher the PESQ value is,
the better the speech quality.

We compared the PESQ values and average code lengths in
three conditions with the size of gain tables of 5 bits: (1) The
transformation coefficient λm is set to achieve higher seg. SNR
and the same average code length as G.718 (Huffman coding)
(Higher seg. SNR); (2) λm is set to achieve smaller bit-rates
and the same seg. SNR as G.718 (Same seg. SNR); (3) λm

is set to achieve lower seg. SNR and smaller bit-rates than
G.718 (Lower seg. SNR). Furthermore, these three conditions
are divided into three sub-conditions respectively; (i) ECVQ
is applied to both VC and GC modes; (ii) ECVQ is applied
to only VC mode, and G.718 codebook is applied to GC
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mode; (iii) ECVQ is applied to only GC mode, and G.718
codebook is applied to VC mode. For 300 input speech files,
we calculated the values of PESQ and average code lengths
with 95% confidence interval through both VC and GC modes
in Huffman coding for each condition. The results are shown
in Fig. 5. In condition (i), the result for a 4-bit table with λ0

in each mode is also shown.
It was found that in condition (ii) higher values of PESQ

and shorter average code length than the condition in G.718
were simultaneously achieved. In condition (i), the reduction
in average code length of about 1 bit per sample was achieved
with much the same value of PESQ as the condition in
G.718. On the other hand, for the 4-bit table with λ0, which
corresponds to the LBG algorithm, there is a larger decrease
in the value of PESQ. Therefore, it is thought that the offered
design algorithm based on ECVQ is effective. One sample
(sub-frame) has 5-ms length. So a reduction of 1 bit per sample
corresponds to information compression of 0.2 kbps. If the
extra bits can be given to other parameters of the system,
speech quality should be improved.

VII. CONCLUSION

We improved ITU-T G.718 assuming that variable-length
coding is used in VoIP. We focused on the gain table of
residual signal in ACELP for 12 kbps. To optimize the gain
table in terms of both distortion of speech and code length, we
introduced a design method that considers the relation between
distortion and code length by means of the algorithm based
on ECVQ instead of usual VQ. By the objective evaluation
of PESQ, we showed that much the same speech quality as
G.718 and information compression of about 0.2 kbps at most
can be simultaneously achieved.

In the future, we intend to consider evaluation criteria for
distortion and carry out subjective evaluation experiments.
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