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ABSTRACT

Semi-blind source separation (SBSS) is a special case of the well-
known source separation problem when some partial knowledge
of the source signals is available to the system. In particular, a
batch-wise adaptation in the frequency domain based on the in-
dependent component analysis (ICA) can be effectively used to
jointly perform source separation and multi-channel acoustic echo
cancellation (MCAEC) without double-talk detection. However,
the non-uniqueness problem due to the correlated far-end refer-
ence signals still affects the SBSS approach. In this paper, we
analyze the structure of the SBSS de-mixing matrix and the be-
havior of a batch on-line adaptation algorithm under two most
common far-end mixing conditions. We show that with a proper
constraint on the de-mixing matrix, high echo reduction can be
achieved just as the misalignment remains relatively low even for
the worst-case scenario of single far-end talker and also without
any pre-processing procedure to decorrelate the far-end signals.

Index Terms— Blind source separation, multi-channel acous-
tic echo cancellation, semi-blind source separation

1. INTRODUCTION

It was shown in [1] that blind source separation (BSS) and stereo-
phonic acoustic echo cancellation (SAEC) can be effectively com-
bined together by applying independent component analysis (ICA)
in the frequency domain. Such an approach is referred to as the
semi-BSS (SBSS) since the reference signals, i.e., mixture of far-
end source signals, are known a priori and can be used directly
for the adaptation of the separation filter [2]. Although the double-
talk detection is no longer necessary due to the effectiveness of
the ICA and the batch-wise (i.e., off-line) adaptation, the so-called
non-uniqueness problem still exists when the modeling filter is
equal to or longer in length than the far-end room impulse response
[3]. Such a condition is rare since in reality the impulse response
length is infinite. However, the ill-conditioning of the mixing sys-
tem does occur frequently, e.g., when only one far-end source is
active, resulting in highly correlated reference signals from the far
end. Thus some pre-processing procedure before playback at the
near end to decorrelate the signals becomes necessary at the cost
of degraded signal quality perceived by the near-end listeners.

In this paper, we analyze the structure of the SBSS de-mixing
matrix to see how the multi-channel acoustic echo cancellation
(MCAEC) performance can be improved. We also study the be-
havior of a combination of batch-wise and on-line adaptations to
possibly take advantage of both types of learning. We will show
through two different far-end mixing conditions that with a proper
constraint on the de-mixing matrix, both high echo reduction and
relatively low misalignment can be achieved even for the worst-

Figure 1: Model of the near-end and the far-end mixing systems
and the SBSS system.

case scenario and without any pre-decorrelation procedure per-
formed on the far-end signals.

2. SBSS MODEL

We consider a time-invariant mixing model in the frequency do-
main where the number of microphones are assumed to be greater
than or equal to the number of sources. As illustrated in Figure
1, a set of sources, represented by a vector q, is recorded by mi-
crophones at the far end, where the corresponding mixing system
is represented by a frequency response matrix G. A set of near-
end sources s is multiplied by the frequency response H11, and a
set of reference signals r, after being played through the near-end
loudspeakers, is multiplied by the frequency response H12 and
recorded by the near-end microphones. Then a set of observations
x used at the input of the SBSS system is

x(ω) = H(ω)

(

s(ω)
r(ω)

)

, (1)

H(ω) =

[

H11(ω) H12(ω)
O I

]

, (2)

where H is the response matrix of the entire near-end mixing sys-
tem, H22 is naturally assumed to be the identity matrix I, and O

is a matrix with all elements equal to 0. The purpose of the SBSS
system is to perform the estimation of the near-end sources by us-
ing a de-mixing matrix W:

y(ω) = W(ω)x(ω) =

(

ys(ω)
yr(ω)

)

'

(

s(ω)
yr(ω)

)

, (3)
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where we generalize the structure of W as

W(ω) =

[

W11(ω) W12(ω)
O W22(ω)

]

. (4)

We note that in the SBSS, we are not interested in recovering
the signals played through the loudspeakers since we already have
them as the reference signals. Then yr can be any linear combina-
tion of r, so the form of the sub-matrix W22 can be controlled to
optimize the SBSS performance appropriately.

3. SOLUTION OF THE SBSS

The near-end echo paths, represented by the response matrix H12,
can be identified through the SBSS by estimating the de-mixing
matrix W that maximizes the statistical independence of the out-
put signals in y. Any generic ICA algorithm can be used for the
estimation of W, but from now on the natural gradient algorithm
will be considered, where W is updated by iterating over the fol-
lowing formulas:

y(ω) = W(n)(ω)x(ω), (5)

W(n+1)(ω) = W(n)(ω) + η(I − E[Φ(y(ω))y(ω)H ])W(n)(ω),
(6)

where η is the adaptation step-size, Φ(·) is a non-linear function
and E[·] is the expectation operator that can be approximated by
averaging over time. A search for the solution converges when
the gradient I−E[Φ(y)yH ] becomes null, i.e., when what we re-

fer to as the generalized covariance matrix E[Φ(y)yH ] becomes
an identity matrix. By a Taylor expansion of the non-linear func-
tion Φ(·), such a condition is achieved by minimizing each generic
cross-moment of order α:

E[ya(ω)α
yb(ω)∗] = 0, ∀α. (7)

That is, the statistical independence for two source outputs ya and
yb is achieved when the generalized covariance E[Φ(ya)y∗

b ] is
null, as two zero-mean random variables can be considered inde-
pendent if all of the high-order cross-cumulants are null [4].

Lets for the moment consider statistical independence between
the separated sources vector ys associated with the near-end sys-
tem and the separated sources vector yr associated with the refer-
ence signals. By applying (1), (2), (3), and (4) to (7), we obtain

E[ys(ω)αyH
r (ω)] = E[(W11(ω)H11(ω)s(ω)+

(W11(ω)H12(ω) + W12(ω))r(ω))αrH(ω)WH
22(ω)] = O

∀ α,

(8)

where yα
s indicates the raising of each element of the vector ys

to the power α and yH
s denotes the Hermetian (conjugate) trans-

pose of ys (i.e., the scalar sources ya and yb were substituted with
the vectors of the factorized sources ys and yr). By applying the
binomial expansion, we can rewrite (8) as

E[(W11(ω)H11(ω)s(ω))αrH(ω)WH
22(ω)]+

E[(W11(ω)H12(ω) + W12(ω))r(ω))αrH(ω)WH
22(ω)]+

E[(
∑α−1

k=1
(α−1)!

k!(α−1−k!)
(W11(ω)H11(ω)s(ω))α−1−k¯

((W11(ω)H12(ω) + W12(ω))r(ω))k)rH(ω)WH
22(ω)] = O

∀ α,

(9)

where ¯ indicates is the Hadamard (element-wise) product. By us-
ing the multinomial expansion to further expand the additive terms
with powers α, α− 1− k, and k, it is possible to demonstrate that

if r and s are statistically independent from each other, the first
and the third terms in (9) are null. In fact, all the matrix elements
would be factorized as a sum of moments E[sα

i rj ] that are zero
for each α if si and rj are zero-mean and mutually independent.
It means the solution for H12 that satisfies (8) does not depend on
the near-end sources, and the optimization is possible even though
both the near-end and the far-end sources are active at the same
time (i.e., the double-talk situation). Then (9) can be simplified as

E[(W11(ω)H12(ω) + W12(ω))G(ω)q(ω))αqH(ω)

GH(ω)WH
22(ω)] = O,

(10)

where we substituted the reference signals vector r by consider-
ing the far-end mixing system G and the far-end sources vector q.
Since the far-end sources are assumed to be statistically indepen-
dent from each other (see Appendix), we can rewrite (10) as

[(W11(ω)H12(ω) + W12(ω))G(ω)]αE[q(ω)αqH(ω)]

GH(ω)WH
22(ω) = O,

(11)

where E[qαqH ] is the generalized (high-order) autocorrelation
matrix of the far-end sources that has a full rank since all of the
sources are assumed to be statistically independent. If W22 and
G are not singular, then (11) is satisfied when

W11(ω)H12(ω) + W12(ω) = O. (12)

Finally, assuming that W11 is known and invertible, H12 can then
be estimated as

Ĥ12(ω) = −W11(ω)−1
W12(ω). (13)

By (10) we assume that there is always a solution W12 =
−W11H12 that maximizes the statistical independence of the out-
put signals in ys. However, the exact echo path identification is
only possible if W11, W22 and G are fully ranked. The singular-
ity or the ill-conditioning of W11 and W22 is a rare occurrence
if we assume spatial diversity for the near-end loudspeakers and
talkers. The ill-conditioning of G is a more serious problem than
that of W11 or W22 since it occurs when the far-end talkers are
located at the same position or, equivalently, if only one source is
active at a time.

The dependence on the far-end mixing conditions hampers a
stable on-line adaptation, which ultimately affects the identifiabil-
ity of the echo paths. Thus a proper constraint to limit the fluctua-

tion of the solution Ĥ12 during an iterative optimization procedure
becomes necessary.

4. EFFECT OF THE CONSTRAINT ON W(ω)

We assume that the far-end impulse response is always longer than
the near-end modeling filter in the time domain. However, due
to sparse and ill-representation of signals and mixing system in
the frequency domain, the non-uniqueness problem may still exist
in practice with respect to the number of far-end sources and mi-
crophones. Therefore, we need to consider two different mixing
conditions at the far end separately to discuss the effect of a matrix
constraint:

(A) The number of active sources is equal to the number of mi-
crophones (2 far-end sources for the SAEC case).

(B) The number of active sources is less than the number of mi-
crophones (1 far-end source for the SAEC case).
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4.1. Case A

If all of the far-end sources are simultaneously active, the refer-
ence signals in r should be linearly independent, although they
are still statistically correlated according to the impulse responses
corresponding to an individual source. Hence, the generalized co-
variance matrix of the ICA adaptation has a full rank, and the it-
erative update of W can converge to a unique solution indepen-
dently from a constraint on W22 (e.g., W22 = I). From the point
of view of the maximization of the statistical independence, the
intrinsic decorrelation of the reference signals by the ICA would
increase the convergence speed of the optimization procedure such
that no constraints should be applied to W22. However, without
any constraint, the matrix may accidentally approach to the singu-
larity, which hampers the inversion of the matrix W needed by the
minimal distortion principle (MDP) to reduce the intrinsic scaling
ambiguity of ICA. Since we are not interested in the final output
components corresponding to the decorrelated reference signals,
we can avoid the inversion of the entire de-mixing matrix W and
apply the MDP only for the separation of the near-end sources as:

W11(ω) = diag(W−1
11 (ω))W11(ω). (14)

4.2. Case B

The optimal solution for H12 may not be unique when there are
less number of sources than the number of microphones at the far
end. Such a case corresponds to the near-singularity of the far-end
response matrix G or equivalently to the rank deficiency of the
generalized autocovariance matrix E[Φ(r)rH ]. Nevertheless, al-
though exploiting the higher-order statistics (HOS) cannot directly
solve the non-uniqueness problem, the likelihood that the gradient
of the ICA optimization cost would point towards a specific re-
gion in the solution space during a gradient-descent adaptation is
strongly related to the structure of the de-mixing matrix and to the
characteristics of the far-end impulse responses.

For example, if the far-end microphones are sufficiently
spaced apart as in a realistic situation (e.g., 10 to 20 cm), the far-
end impulse responses are already sparse in the time domain. The
sparsity is not necessarily inherited from the time domain at each
frequency in the frequency domain, but the frequency responses
are likely to be only slightly correlated across frequency. Then we
can approximate (after dropping ω for notational convenience)

[(W11H12 + W12)G]α ' (W11H12 + W12)
α
G

α
, (15)

which can be derived as in Appendix by considering W11, H12

and W12 to be constant matrices and G a matrix of zero-
mean independent random variables, taking the expectation of
[(W11H12 + W12)G]α, and estimating E[Gα] by Gα. Also,
since the far-end sources are assumed to be independent, the gen-
eralized covariance matrix E[qαqH ] is expected to be diagonal.
Thus we can approximate

D = G
α
E[qα

q
H ]GH ' diag{E[qα

i q
∗
i ]

∑

j

g
α
ijg

∗
ij}, (16)

where D is a diagonal matrix and ∗ denotes the complex conju-
gation. Therefore, by assuming for simplicity W11 = I (i.e., no
near-end source separation is performed) and using the constraint
W22 = I, (11) reduces to

E[ysy
H
r ] ' (H12 + W12)

α
D. (17)

It then becomes clear that with such a constraint on W22, the el-
ements of the matrix W12 are independently optimized. In other

words, the update direction during the gradient-descent optimiza-
tion procedure for each element of W12 is less likely to be affected
by other elements that are related to different echo paths. Hence,
the effect of the non-uniqueness problem is alleviated through the
reduction in the ambiguity of physically allowed solution for the
near-end echo paths.

We should point out that the diagonal constraint cannot com-
pletely solve the true non-uniqueness problem since (16) is only
an approximation. Nonetheless, the constraint tends to globally
bind the solution space of the time-domain filters related to W12,
which consequently reduces the overall misalignment. In addition,
fixing the diagonal elements of W22 may introduce a divergence
problem due to the norm of its gradient, in which case the prob-
lem is solved through the scaled natural gradient [5]. In such a
version of the natural gradient algorithm, the de-mixing matrix is
scaled at each iteration by a factor c in order to impose a posterior

unit-norm constraint on E[Φ(y)yH ]. To apply the scaled natural
gradient and still force W22 to be diagonal, we need to impose the
constraint ∆W22 = 0 (i.e., keep W22 constant) and the initial-
ization W(0) = I.

5. EXPERIMENTAL RESULT

The SBSS algorithm was evaluated for the SAEC case, where the
data were simulated in order to generate the worst case scenario
from the misalignment’s point of view: two far-end sources q1 and
q2 alternate in activity, each being active for a long time (25 s), and
do not change in position during the time. Impulse responses were
simulated using different distances between the microphones. The
simulated far-end impulse responses have T60 = 300 ms, and the
filters for G was truncated to 4096 taps. The simulated near-end
impulse responses have a filter length of 3200 taps. The short-time
Fourier transform (STFT) was applied to signals sampled at fs =
16 kHz with Hanning windowing of 4096 taps with 75% overlap.
The step-size and the non-linear function for the ICA were η = 0.1
and Φ(·) = tanh(10 · |x|) exp(jφ(x)), respectively, where x is
the the observed signal vector.

For evaluating the performance of the SBSS with or without
the de-mixing matrix constraint, we considered the case of just
one near-end source and microphone since we were interested only
in the effect of the constraint on W22. We implemented a batch
on-line adaptation, where each block b of x is transformed into a
time-frequency representation by the STFT, and the SBSS is ap-
plied independently for each frequency using a certain number of

iteration iter. The estimate Ŵ was averaged across blocks by an
autoregressive model

Ŵ
(b)(ω) = γ · Ŵ(b−1)(ω) + (1 − γ) · W(b)(ω) (18)

with a fixed step-size γ = 0.9, where W(b) is the de-mixing ma-
trix obtained in the block b. At each new block, a previously es-

timated Ŵ was used to initialize the ICA. For each batch imple-

mentation, W(b) was computed using non-overlapped blocks of 1
second in order to avoid more than one source being present within
a same block to maintain the worst-case scenario of G being al-
ways singular. The true echo return loss enhancement (tERLE),
i.e., ERLE calculated after removing the near-end source signals,
and the misalignment were computed as in [1]. For the compu-
tation of the tERLE, the filters obtained from the inversion of the
de-mixing matrix at each frequency were transformed from non-
causal to casual by a circular shifting of 2048 taps. Sample signals
and results can be found at [6].
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Figure 2: Comparison between constrained SBSS and uncon-
strained SBSS (iter=20).
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Figure 3: Performance comparison for different number of ICA
iterations for each block.

Figure 2 shows the comparison between the constrained and
the unconstrained SBSS for a far-end microphone spacing of
0.2 m. We note that for the constrained SBSS, the tERLE does not
improve continuously during the adaptation but remains relatively
stable around a value of 13-14 dB while the misalignment slowly
decreases. When an active far-end talker switches to another every
25 s, the unconstrained SBSS evidently has a large degradation in

the tERLE because Ŵ12 depends on the far-end conditions that
change at those times. A better interpretation can be obtained by
analyzing the behavior of the unconstrained SBSS, for which we
note that the misalignment is considerably high even though the
tERLE is just as high as for the constrained SBSS during the first
25 s (only q1 is active). It means that the ICA converges to a so-
lution that is strongly dependent on the far-end mixing system,
which generally corresponds to the estimate of non-causal filters
and cannot be interpreted in the same way with the echo path that
has a physical meaning at the near-end. Such a solution is then not
any more valid for the talker q2 than for the talker q1 and explains
such a degradation in the echo reduction when G changes.

Another interesting comparison is shown in Figure 3, where
only the constrained SBSS with a different number of the ICA iter-
ations for each block is considered. We observe that as the number
of iterations is increased, the tERLE converges quickly to a good
solution but with a high variance during the time. In fact, since the
non-uniqueness problem is not completely solved by the W22 con-
straint, the variance of the convergence point in its solution space
is directly proportional to the number of iterations. In other words,

W(b) depends less on its starting point as we increase the number
of iterations, and the time-smoothed adaptation in (18) becomes
less effective. On the other hand, by moving from a batch-wise to
an on-line adaptation (i.e., 2 iter), we increase the stability of the
adaptation but at the cost of a very slow convergence speed. Con-
sequently in a batch on-line implementation, a trade-off between

stability and the convergence speed must be made.

6. CONCLUSION

We discussed the effect of the non-uniqueness problem in the
semi-blind source separation (SBSS). We showed that the mis-
alignment can be reduced by a proper constraint on the de-mixing
matrix in a batch on-line ICA adaptation. Experimental results
show that in the worst-scenario case of single far-end talker, a sta-
ble adaptation is possible without the need of any decorrelation
procedure on the reference signals before being played through the
near-end loudspeakers. Future investigation will consider studying
the effect of the separation of multiple local sources and the inter-
action between the local sources and the reference signals.

APPENDIX

Assuming that x = {xj} is a vector of zero-mean random variables of
length N and that A = {aij} is an N ×N matrix with constant elements,

the statistical moment of order α for the ith element of Ax is given by

E



(
N

∑

j=1

aijxj)
α



 ∀i. (19)

By using the multinomial expansion, (19) can be rewritten as

E









∑

l1,l2,...,lN≥0
l1+l2+...+lN =α

α!

l1!..lN !

N
∏

j=1

(aijxj)
lj









∀i. (20)

If the elements in x are mutually independent, (20) reduces to

E





∑

j

(aijxj)
α



 =
∑

j

aα
ijE[xα

j ] ∀i. (21)

We can then generalize that

E[(Ax)α] = AαE[xα], (22)

where xα and Aα indicate the raising of each element of the vector x and
of the matrix A to the power α. By the property of the covariance of linear
combinations of variables, we know that if the random variables in x are
independent, then given the N × N matrices A and B, we have

E[AxxHB] = AE[xxH ]B. (23)

By using (20) and following the derivation of (22), it is possible to gener-
alize (23) for higher-order moments as

E[(Ax)αxHB] = AαE[xαxH ]B. (24)
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