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ABSTRACT

We discuss acoustic score-following algorithms for mono-
phonic musical performances with arbitrary repeats and
skips as well as performance errors, particularly focusing
on reducing the computational complexity. Repeats/skips
are often made arbitrarily during musical practice, and it
is desirable to deal with arbitrary repeats/skips for wide
application of score following. Allowing arbitrary re-
peats/skips in performance models demands reducing the
computational complexity for score following. We show
that for certain hidden Markov models which assume in-
dependence of transition probabilities from and to where
repeats/skips are made, the computational complexity can
be reduced from O(M2) down to O(M) for the number of
notes M , and construct score-following algorithms based
on the models. We experimentally show that the proposed
algorithms work in real time with practical scores (up to
about 10000 notes) and can catch up with the performances
in around 3.8 s after repeats/skips.

1. INTRODUCTION

Audio score following is the real-time alignment of acous-
tic signal of musical performance to the performance score,
and has wide application such as automatic accompani-
ment, automatic score page turning and automatic caption-
ing to music videos. It is particularly essential for auto-
matic accompaniment, which synchronizes the accompa-
niment automatically to human performances in real time
and helps music performers and lovers practice ensemble
music by themselves.

Human performances have tempo fluctuation due to per-
formers’ physical limitation and their expression of mu-
sical ideas. Musical performers, both amateurs and pro-
fessionals, also make performance errors such as pitch er-
rors and note insertions and deletions. In addition to these,
acoustic signals of musical performances are of complex
nature because of possible noise and acoustic variation of
musical instruments. According to these features of human
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performances and their acoustic signals, score following
is a challenging task in musical signal processing and has
been a field of research since [1, 2] and further explored
in [3–12] (see [13] for a review).

Particularly during music practice, performers often re-
peat and/or skip sections for correcting errors or for prac-
ticing specific sections again and again, and it is desirable
to handle such repeats/skips for application of score fol-
lowing in practical situations. In [5, 6, 12], score follow-
ing algorithms allowing repeats/skips from and to specific
score positions were studied. Although there are perform-
ers’ tendencies on from and to where repeats/skips occur,
estimation of the specific score positions is generically dif-
ficult, especially in practical situations where scores are
prepared in musical instrument digital interface (MIDI)
data or performances by various performers are necessary
to be dealt with. Therefore it is attractive to have score fol-
lowing algorithms which can handle arbitrary repeats/skips
from and to any score positions.

Allowing arbitrary repeats/skips leads to a large search
space and results in two problems: (i) large computational
complexity and (ii) a risk of lowering score-following ac-
curacy. As we later discuss in detail, simply-generalized
versions of algorithms in [3, 5, 6] are difficult to work in
real time for practical scores with O(1000) to O(10000)
notes 1 , and it is unavoidable to reduce the computational
complexity.

Statistical approach to score following has advantages in
handling acoustic variation of musical performances and is
used in many previous works [13]. In this approach, one
can either estimate the score position first and the tempo
[3, 4], or estimate simultaneously the score position and
the tempo [9, 10, 12]. Since the search space is too large
in the latter case when dealing with arbitrary repeats/skips,
we adopt the former method.

In the following, we discuss certain hidden Markov mod-
els (HMMs) for musical performance, which explicitly
models performance errors and arbitrary repeats/skips. We
show, when assuming independence of transition probabil-
ities from and to where repeats/skips are made, the compu-
tational complexity can be reduced significantly, enabling
us to construct acoustic score-following algorithms which
handle arbitrary repeats/skips and work in real time. We
experimentally evaluate the performance of the proposed
algorithms for human performances in practice and also

1 For example, there are around 1900 notes in the first movement of
the clarinet part in Mozart’s Clarinet Quintet.
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Figure 1. The performance HMM consists of states corre-
sponding to notes, and the state emits acoustic features of
the performed note.

examine whether there is any significant lowering of score-
following accuracy. We confine ourselves to monophonic
performances for the sake of simplicity.

2. HMM-BASED PERFORMANCE MODEL

2.1 HMM for Score Following

We regard score following as an inverse problem of esti-
mating score positions from acoustic signals by modeling
human performances. The human performance without er-
rors and repeats/skips can be seen as a process of making a
transition to the next note, and emitting an acoustic feature
of the performed note. By associating the notes on score
with hidden states, the performance is also interpreted as a
state transition sequence. The performance often includes
changes in tempos and note durations because of physi-
cal limitation and musical expression, and acoustic signals
of the performance include noise and acoustic variations.
These state transitions and emission of acoustic features
are described as a stochastic process [3]. Assuming that
the transitions depend only on the current state, the perfor-
mance is represented by an HMM as shown in Fig. 1.

A performance with insertion/deletion errors are also de-
scribed by an HMM [3]. Insertion is represented by a self
transition and deletion is represented by a transition to the
state after the next as shown in Fig. 2. These are described
as

Ai,i = ai +(1− ai)A
(ins)
i , Ai,i+2 = (1− ai)A

(del)
i . (1)

Here, {Ai,j}Mi,j=1 is the state-transition probability matrix,
and the durational self-transition probability ai is deter-
mined by matching the expected staying time with the du-
ration di of the i-th note, which yields

di =

∞∑
k=1

kak−1
i (1− ai) =

1

1− ai
. (2)

These errors are expressed as transitions to neighboring
states and the HMM topology is left-to-right.

Figure 2. Representation of errors and repeats/skips in
the performance model. Deletion (green arrows) is rep-
resented by a transition to the state after the next. Insertion
(purple arrows) is described as a self transition, and substi-
tution (orange objects) is represented by emission of CQF
spectrum of incorrect pitch. Repeat/skip is expressed as a
transition to a remote state (red arrows).

2.2 Feature Extraction from Acoustic Signal

The variation in acoustic signals of the performance is
large even within the same pitch. For score following,
therefore, features are preferred to be sensitive to pitch
information and less sensitive to timbre and volume. As
stated in [8], this requirement is matched by the normalized
output of constant-Q filters (CQFs) with central frequen-
cies at semitone intervals (CQF spectrum). For shorter
calculation time, the CQF spectrum was calculated with a
fast frame-wise algorithm [14]. Since a spectrum changes
significantly at the onset time and is otherwise stationary,
spectral flux is employed to distinguish successive notes of
the same pitch [15].

2.3 Emission Probability

As shown in Fig. 2, substitution is represented by emission
of CQF spectrum of incorrect pitch, and the correspond-
ing probability is described as a mixture weight of a Gaus-
sian mixture model for emission probability. The emission
probability bi(yt) at the i-th state of a CQF spectrum yt at
time t is thus

bi(yt) =
∑
k∈K

ωk(i)N (yt|µk,Σk) (3)

where N (·|µk,Σk) denotes a multidimensional normal
distribution with mean µk and covariance matrix Σk, K
is the set of all pitches, and ωk(i) stands for the mixture
weight.

3. MODELING OF ARBITRARY REPEATS/SKIPS
AND THE COMPUTATIONAL COMPLEXITY

3.1 Topology of the Performance HMM

As discussed in Sec. 2, a performance with inser-
tion/deletion/substitution errors is represented by left-to-
right transitions to neighboring states and emission of
acoustic features of incorrect pitch. On the contrary, re-
peats/skips from and to arbitrary notes are represented by



transitions from each state to all the states, including re-
mote ones (two examples are shown in Fig. 2.). Therefore,
the topology of the performance model with arbitrary re-
peats/skips, which generalizes the models in [3, 5, 6], is
complex, resulting in a large search space.

3.2 Computational Complexity of Score Following

The score position is estimated by calculating the most
probable state given the CQF spectrums up to the time of
estimation. In equations,

ŝt = argmax
st

p(st|y1:t) = argmax
st

p(y1:t, st) (4)

where st and ŝt denote the state random variable at time t
and its estimated value, and y1:t= {yτ}tτ=1 stands for the
CQF spectrum sequence. The second equation is derived
from the Bayes’ theorem.

(4) can be solved by applying the online forward algo-
rithm, and its update rule is described as

αt(i) = bi(yt)
M∑
j=1

αt−1(j)Aj,i (5)

where αt(i):=p(y1:t, st=i) is the forward variable. Here,
the initial value α1(i)=bi(y1)πi is calculated with the ini-
tial distribution πi. (5) indicates that the computational
complexity for score following is O(M2) since there are
M summations over M states. As shown in Sec. 4, the
O(M2) complexity is too large for the score follower to
work in real time for scores with a number of notes larger
than a few hundreds, and therefore it is crucial to reduce
the complexity for processing practical scores.

3.3 Algorithms for Reducing Computational
Complexity

In order to reduce the computational complexity, some
constraints on the state-transition probability matrix are
necessary. In this section, we propose two models and al-
gorithms reduced the complexity to linear orders.

Human performers probably perform with their tenden-
cies of pausing before repeats/skips and resuming after
them. We can represent the tendencies at each state as
the probabilities of pausing and resuming, or Cj and Di.
The distribution of where human performers resume is also
probably dependent on where they pause. However, allow-
ing the dependence results in O(M2) computational com-
plexity as shown in Sec. 3.2, and thus we assume that the
distribution of where human performers resume is inde-
pendent of where they pause. With this assumption, the
transition matrix can be written as

Aj,i = Bj,i + CjDi (6)

where Bj,i is a band matrix with bandwidth three repre-
senting the straight performance and deletion/insertion er-
rors. Note that the normalization conditions

∑
i Aj,i=1

and
∑

i Di=1 yield Cj=1−
∑

i Bj,i.

Figure 3. Representation of repeats/skips in the proposed
performance model with the pause state (a blue disk) cor-
responding to pause sections at repeats/skips. Those are
expressed as two-step transitions via the pause state (red
arrows).

Substituting (6) into (5), we have

αt(i) = bi(yt)

 i∑
j=i−2

αt−1(j)Bj,i

+
( M∑

j=1

αt−1(j)Cj

)
Di

 .

(7)

Since the sum in parentheses in the second term on the
right-hand side is independent of i, it is sufficient to calcu-
late this once at each estimation. The computational com-
plexity of the sum is O(M) and that of the rest of (7) is
O(M). Thus, we can reduce the computational complexity
required for the estimation from O(M2) down to O(M).

We obtain a similar model by focusing on a silent pause
which is often made at repeats/skips before resuming per-
formance. Such a pause can be represented by an addi-
tional state (the pause state). Since the repeats/skips are de-
scribed as two-step transitions via the pause state as shown
in Fig. 3, the tendencies of pausing and resuming the per-
formances can be expressed as the transitions probabilities
to the pause state and those from the pause state. In equa-
tions, the transition matrix of the model is

Ãj,i = Bj,i, Ãj,N = Cj , ÃN,i = (1− ÃN,N )Di (8)

for i, j ∈ [1,M ] where the N -th state is the pause state and
N=M + 1.

Naively, the computational complexity for updating the
forward variable in the model is O(N2). However, since
the transition probabilities to the note states except for
those from neighboring notes and the pause state are zero,
the complexity for updating the forward variable for the
note states is reduced to O(M). For the pause state, we
must deal with transitions from all the states, and the com-
plexity for calculating its forward variable is O(N). There-
fore, the overall computational complexity is reduced to
O(N) ≃ O(M).

While the above discussion of computational complex-
ity is based on the forward algorithm, a similar discussion
is valid for the Viterbi algorithm. With a slight modifica-
tion, the discussion can also be generalized for Mealy-type
emission probabilities of the form similar to Aj,i in (6).

3.4 Comparison of the Two Models

The two models discussed in the previous section has a
similar structure as seen in (6) and (8). In both models,



one can describe tendencies of performance on the distri-
butions of notes to which repeats/skips are made. Both the
models rely on the independence of the distribution from
the notes before them. The difference is the explicit mod-
eling of the pause state in the latter model. In actual per-
formances, silent pauses at repeats/skips often exist and
their duration is long to some extent. Therefore, the latter
model is expected to be more suited for score following.
However, since quantitative comparison of both the mod-
els is difficult, we provide experiments for evaluating the
performances of the models in Sec. 4.

4. EVALUATION OF COMPUTATIONAL
COMPLEXITY AND SCORE-FOLLOWING

PERFORMANCE

4.1 Experimental Conditions

4.1.1 Overall Conditions

To evaluate our algorithms, we conducted three exper-
iments. The first experiment examines quantitatively
whether the proposed algorithms works in real time with
the practical scores, the second one evaluates the per-
formance of the proposed algorithms in following re-
peats/skips, and the third one evaluates score-following ac-
curacy and examines whether there is a lowering of accu-
racy in modeling arbitrary repeats/skips for performances
without repeats/skips.

In all the experiments, we used acoustic signals of mono-
phonic performances at 16 kHz sampling rate and the
scores were prepared in MIDI format. CQF spectrums
were extracted by using 128 ms frames with a 20 ms hop-
size, and the emission probabilities of the performance
models were trained by clarinet performances in RWC
musical instrument sound database [16]. The parameters
of the proposed algorithm without the pause state were
set as π=[1, 0, 0, · · · , 0]⊤, A

(ins)
i =A

(del)
i =exp(−500),

Ci=exp(−1000), and Di=1/M for i∈[1,M ]. For the
other proposed algorithm, the parameters were set as
ÃN,N=0.98 in addition to the above. The probabilities
of making errors of semitone, whole tone and perfect 12th
were set as 0.001, 0.001, and 0.0001, respectively.

4.1.2 Condition on the First Experiment

Since the computational complexity mainly depends on the
number of notes, and not on pitches and durations, artifi-
cially prepared scores with various numbers of notes were
used in the first experiment. The machine had an Intel Core
2 Duo P9400 2.40 GHz with 6 MB of cache and 2 GB
of RAM, and the operating system was Ubuntu 12.04LTS.
The evaluation measure was the real time factor (RTF) de-
fined as the ratio of the processing time and the hop-size,
which is less than one if and only if the algorithms work in
real time.

4.1.3 Condition on the Second Experiment

In the second experiment, for evaluating the score-
following performance under practical situations, we used
acoustic signals of 14 recorded performances (total 1687 s)
by an amateur clarinet performer during his musical prac-
tice. Seven different songs were performed including clas-
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Figure 4. Real time factor (RTF) and its standard deviation
of score following with the various number of notes in the
performance score. The red points represent RTFs of the
conventional algorithm, and the blue ones represent RTFs
of the proposed algorithm with the pause state.

sical and popular music pieces and nursery rhymes, par-
tially from RWC music database [16]. 43 repeats/skips and
45 insertion/deletion/substitution errors were made natu-
rally in the performances, and the ranges of repeats/skips
were distributed from 0.1 s to 85 s in score time (0 bars to
43 bars). The performer did not waited the score follower’s
catching up with his performance. As evaluation measures,
the detection rate of repeats/skips and the following time
were employed. The following time is defined as the time
interval (in units of seconds and notes) between the repeat
or skip and the time when the score follower caught up
with the performance within a range of ∆ ms.

We compared the proposed algorithms with the algorithm
without modeling of repeats/skips which corresponds to
the previous work [3]. While Cano et al. used slightly
different acoustic features of pitch and energy, CQF spec-
trums were employed as acoustic features in this experi-
ment. The difference does not result in lowering the score-
following accuracy, and rather improves it as stated in [8],
and we believe that our choice of the acoustic features is
adequate.

4.1.4 Condition on the Third Experiment

In the third experiment, a sufficient amount of real per-
formances could not be prepared, and we used mono-
phonic acoustic signals converted from MIDI signals. For
the MIDI signals, the melody parts of 112 popular music
pieces and royalty-free ones without repeats/skips in RWC
music database were employed [16]. Evaluation measures
were the piecewise precision rate and the overall precision
rate used in the MIREX contest [17]. The piecewise pre-
cision rate (PPR) is the average of detection rates of notes
in each piece, and the overall precision rate (OPR) is the
detection rate of notes in all pieces.

4.2 Results and Discussions

4.2.1 First Experiment

The result of the first experiment is shown in Fig. 4, where
the RTF was averaged over 95 calculations for each con-
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Figure 5. Following time (both (a) in second and (b) in notes) of the proposed algorithm with the pause state (w/ pause),
that without the pause state (no pause) and the conventional algorithm (no repeat/skip) in left-to-right fashion.

Evaluation
Measure w/ pause no pause no repeat/skip

Detection rate
of repeats/skips 32/43 29/43 8/43

Table 1. Detection rate of repeats/skips by the proposed
algorithm with the pause state (w/ pause), that without the
pause state (no pause) and the conventional algorithm (no
repeat/skip).

dition. Only the result of the proposed algorithm with the
pause state is shown, since the result was similar for the
other. The figure shows that in the proposed algorithm, the
RTF increases asymptotically in proportion to M and, in
the conventional algorithm, asymptotically in proportion to
M2, which is consistent with the theoretical result in Sec-
tion 3.3. The result shows that the score follower worked
in real time on the computer up to around 10000 notes, and
the conventional one up to around 300 notes. The conven-
tional algorithm is difficult to handle the practical scores
with over O(100) notes, and for those with 10000 notes,
the computation time is around 2 s, or ten times the hop-
size. On the other hand, the computational time is reduced
to around 0.02 s, or one hundredth, by the proposed algo-
rithms, and almost all the practical scores can be used. Al-
though the detail of the upper bound of the number of notes
for real-time working may be changed on other computers
because of difference in processing power, the reduction of
the computational complexity by the proposed algorithms
always remains effective.

4.2.2 Second Experiment

In the second experiment, the algorithm with the pause
state detected 32 repeats/skips of 43, and its following time
was 3.9± 0.8 s (8.0± 1.5 notes) for ∆=500 ms as shown
in Fig. 5 and Table 1. On the other hand, the algorithm
without the pause state detected 29 repeats/skips, and its
following time was 4.9 ± 1.0 s (10 ± 2 notes) for ∆=500
ms. As we conjectured in Sec. 3.4, the proposed algorithm
without the pause state followed repeats/skips later than
that with the pause state. In contrast to those algorithms,
the conventional algorithm corresponding to the one in [3]

detected only eight repeats/skips, and followed those with
11 ± 3 s and 17 ± 8 notes delay. It is obvious that mod-
eling repeats/skips significantly improves the performance
in following repeats/skips.

The algorithm with the pause state had 11 undetected re-
peats/skips. Some of the undetected repeats/skips were
caused by the existence of similar sections and phrases
such as choruses in popular music. Others happened in
the cases where only a few notes were performed between
the repeats/skips. Such scores and performances are gen-
erally difficult to follow both for computers and humans.
Because human accompanists would need comparable fol-
lowing time, the proposed algorithms are applicable to
practical use.

4.2.3 Third Experiment

In the third experiment, all the PPRs were 0.839 ± 0.009,
the OPRs by the algorithms except that without the pause
state were 30073/36051 and the other was 30070/36051.
There were only the slight difference between the proposed
algorithms and the conventional one in PPR and OPR, and
this result shows that the modeling of repeats/skips did not
lower the accuracy significantly.

4.3 Implementation to Automatic Accompaniment

We also implemented the proposed score-following al-
gorithms to automatic accompaniment. As an ac-
companiment playback module, a tempo estimation
[18] and a playback speed conversion of acous-
tic signals of accompaniment [19] were employed.
Fig. 6 shows the accompaniment result to the perfor-
mances with repeats by the algorithm with the pause
state, and videos for such performances are available
at http://hil.t.u-tokyo.ac.jp/˜nakamura/
demo/automatic_accompaniment.html.

5. CONCLUSION

We have proposed two score-following algorithms
for monophonic performances with both inser-
tion/deletion/substitution errors and arbitrary re-
peats/skips. (i) Assuming the independence of transition

http://hil.t.u-tokyo.ac.jp/~nakamura/demo/automatic_accompaniment.html
http://hil.t.u-tokyo.ac.jp/~nakamura/demo/automatic_accompaniment.html
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Figure 6. The automatic accompaniment result for a hu-
man performance with repeats by the algorithm with the
pause state. The gray circle expresses a real onset, and the
red line represents the played accompaniment.

probabilities from and to where repeats/skips are made,
we have shown that the computational complexity is
reduced from O(M2) down to O(M). (ii) Focusing
on a silent pause which are often made at repeats/skips
before resuming performance, we have revealed that the
computational complexity is also reduced down to O(M)
by explicit modeling of the existence of the pause. We
have experimentally shown that the proposed algorithms
work in real time for the practical scores up to 10000 notes
and can catch up with performances in around 3.8 s after
repeats/skips. The experiment has indicated that there is
not a significant lowering of the score-following accuracy
originating in modeling arbitrary repeats/skips.

As future works, an extension to polyphonic music is
important to enable the score followers to process more
scores and performances by other instruments as discussed
in [7, 17]. Using tempo information is important to im-
prove the performance of the algorithms and to help us to
use beat information as discussed in [9–11].
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