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ABSTRACT auditory scene analysis [5, 6]. Chazan addressed a speech

In this paper, a method for separation of harmonic struc- separation method by introducing a time warped signal mod-
’ el that allows a continuous pitch variation within a long

tures of co-channel input concurrent sounds is described. A vsis f 71 The robust  thi thod is limited
model for multiple harmonic structures is constructed with analysis frame [7]. The robustness of this method is limite

a mixture of tied Gaussian mixtures, from which a single to the c_ontinuogs pitch_ ve_lriation, and_ it can not cope with
harmonic structure is modeled. Our algorithm enables esti_d|scon.t|nuous: pitch variation such as in piano performance.
mation of both the number and the shape of the underlying Klapuri described a robust MPE method [8] and.\f!rtar)en'
harmonic structures, based on a maximum likelihood esti- constru.cted'a sound §eparat!on system by soph!sncatlng It
mation of the model parameters using EM algorithm and [9]. While this system is prominent in respect that it enables

an information criterion. It operates without restriction on extraction not only of the amplitudes of the partials but even

the number of mixed sounds and varieties of sound sourc:esf)f the phases by pargmeter. estimation of time domain sig-
al model. However, it requires a number of stages such as

and extracts accurate fundamental frequencies continuousl)g . . . . )
with simple procedures in spectral domain. Experiments andywse processing, partial removing, spectral smoothing,
showed high performance of the algorithm for both simul- and smuso_lda! m(_)dellng analysis. .
taneous speech and polyphonic music. Our objective is to develop a method that estimates the
number of underlying harmonic structures and separates th-
1. INTRODUCTION em without restriction on the number of concurrent sounds
Co-channel sound separation technique plays an importangnd a variety of sound sources, and is also able to extract
role in many applications such as automatic transcription pitches accurately as continuous values, with much more
of music, sound source identification, audio coding, audio Simple procedure in the spectral domain.

enhancement and robust speech recognition. However, sep-> A MAXIMUM LIKELIHOOD FORMULATION
aration from a single input is a complicated inverse problem 2 1. Model of Harmonic Structures

that is difficult to be solved analytically. Multi-pitch esti- h £ wi ¢ . h . itch withi
mation (MPE) technique has been generally taken as one ofl N€ use o wmdow unctlc_)n and t 1€ varying pitc W'F n
the most useful approach for it. a short time single analysis frame inevitably cause widen-

In early attempts for MPE, the aim was automatic tran- ing of the spectral harmonics which makes it difficult to
scription of music but most of them were limited in regard extdratct the pretC'S(T value Otf flundétm?ntal frequen jt%hS)E h
to varieties of instruments, number of simultaneous sounds,ar.1 O separate close partials. First, we assume that eac
and range and resolution of extractable pitch. Lately, how- W|dene.d partial is a pI‘Oba.blllty'dIS.tl’lb!Jtlon of frequencies,
ever, Kashino et al. proposed a method that enables trangpproxmated by. a Gaussian distribution model. Therefo're,
scription of polyphonic music even if there are several kinds a single harmonic structure can then be modeled by a tied

of instruments included [1]. Goto presented a method for Gassian mixture model (tied-GMM), in which their means
extracting objective single sound from polyphonic musical have only 1 degree of freedom. - In log-frequency scale,
signals without restriction on the number of simultaneous M¢ans of tied-GMM are denoted hgre = {pn,
sounds [2]. Although both methods are superior for their /% 1087, -, tit1og Ny} wherey; ideally corresponds

respective purposes, they are not suited for separating ever)zc\)/ the Fy _Of kth sound and: denote_s the index 9f partials.
individual sound. e then introduce a model of multiple harmonic structures

Meanwhile, numerous methods of MPE aiming espe- Py(x) which is a mixture ofK tied-GMMs whose model

cially at sound separation have been reported, mainly in mu_parameteﬂ Is denoted as
sical signal processing [3], speech signal processing [4] and {0} = {pp, wg,0 | k=1,--- | K}, (1)



k

wherew;, = {wf, -+ ,w),--- ,wh } ando indicate the

weights and variance (that is briefly assumed here as a con
stant) of the respective Gaussian distributions.

2.2. Model Parameter Estimation using EM Algorithm
Since the observed spectral density functjt(a:), where

2.3. Physical Interpretation as Clustering

From another viewpoint, this ML procedure can be under-
stood as a clustering method under a harmonic constraint
between Gaussian mixture components where spectral den-
sity function is considered as a statistical distribution of

« denotes log-frequency, is considered to be generated fron{MiCro-energies along frequency axis. As we regafaas

the model of multiple harmonic structures, the log-likelihood
difference in accordance with an update of the model pa-
rameterd to 0 is

Py(x)

f(x)log By(x) — f(x)log Py(x) = f(x)log Po(n)’ 2

Although Dempster formulated EM algorithm [10] in order
to maximize the mean log-likelihood considerifigr) as a
probabilistic density function, it can also be formulated in
the same way even jf(z) is replaced with spectral density
function. By taking expectation of both sides with respect
to Py(n, k|z), representing the probability §f, & }-labeled
Gaussian distribution from whichis generatedy) function
is derived in the right-hand sid€) function is by
K Ni .00
QO8)=Y3 [ Palnble) (@) log Pyanklde, @)
k=1 nY >
thus it yields

| {s@noriw - saop rie) fao
By obtainingd that maximizes thé) function, the log-likeli-
hood of the model of multiple harmonic structures with re-

spect to every: will monotonically increase. A posteriori
probability Py (n, k|z) in equation (3) is given as

oo

Pg(l’,n, k)

P, = —— 5
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_ __wng(elmtlogno®) o
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whereg(x|zo,0?) is a Gaussian distribution. By iterating
in two steps as follows, the model parameldocally con-
verges to ML estimates.
Initial-step
Initialize the model parameté.
Expectaion-step
CalculateQ (6, §) with equation (3).
Maximization-step
MaximizeQ(6, #) to obtain the next
estimate
6 = argmax Q(0,0). 8)
Replaced w?th 6 and repeat from
the Expectation-step.

cluster centroids, the posteriori probability in equation (6)
as a membership degree of each micro-energy and the log-
likelihood P;(z,n, k) as a distance function between cen-
troid p;, and a micro-energy, thus tidgfunction in equation

(3) turns out to be the objective function for fuzzy cluster-
ing. We call this concept “Harmonic Clustering.”

3. SEPARATION OF HARMONIC STRUCTURES

The separation scheme as a whole consists of only two pro-
cesses. In 3.1, we adopt one of the most widely used infor-
mation criterion, on which both processes described in 3.2
and 3.3 are based.

3.1. Criterion of Model Selection

Provided multiple different model candidates exist, the op-
timal model must somehow be selected. Here we introduce
Akaike Information Criterion (AIC) proposed by Akaike in
1973 [11]. AIC is given by

AIC = —2 x (maximum log-likelihood of modeél
+2 x (number of free parameters of moyel (9)

and is known to offers proper estimate of the number of free
parameters.

3.2. Estimation of the number of harmonic structures

It is generally known that ML estimates depend highly on
initial values and may often converge to undesirable values.
To avoid this, we first prepare extra amount of tied-GMMs
in the model in order to raise possibility of obtaining the true
values. Then, obviously, the model may over-fit the given
observed specrum. If one Gaussian is enough for approxi-
mating the shape of one partial, the same number of under-
lying harmonic structures must be enough with tied-GMMs.
And this number can be estimated by reducing tied-GMM
one after another until AIC takes minimum value. The spe-
cific operation is as follows:

1. Setinitial values of i1, - - - , ux } in the limited fre-
guency range.

. Estimate the ML model parameters by EM algorithm.
However,w! is constrained here as

(10)
Thisw* represents the degree of predominandetiof

tied-GMM. In Maximization-step, model parameters
w, andw” should be updated



Ni oo
Z/ (x—logm)Py(n.k|z) f(x)dx
= =

. ,(11)
3 / Py(n, klo) f()da
n=1v ">
1 Ny, 0o
ok = N ;/m Py(n, k|z)dz, (12)

whereF is an integral off () with respect tar.

. Calculate AIC with equation (9). Since there are two
free parameters for each tied-GMM, the model has
2 x K free parameters altogether. If the AIC in-
creases, the number of tied-GMMs just before they
are reduced in step4 will be the estimate of the num-
ber of harmonic structures.

. Remove tied-GMM(s) that conforms to either of the
two conditions given below, and repeat from step 2.

e The one whose* is the minimum among all.
Since the contribution to the maximum log-lik-
elihood must be the least.

The one whosev® is smaller if the two adja-

cent representative means become closer than a

certain distance (threshold). Since the two rep-

resentative means are presumed to converge to

the same optimal solution.

An example of how this process actually works is shown in
Fig.1 and the input spectrum used in it is depicted in Fig.2.

The broken line represents the point where the model pa-
rameters were judged to be converged and the line graph

indicates the value of AIC. Since AIC takes minimum value

when three tied GMMs are left, the estimate number here is

3.
3.3. Estimation of F; and Spectral Shape

In the previous process, the ML procedure allows to aqcuire

local optimal solutions ofi;, without distinction of trueFys,
harmonics or subharmonics. Therefore, tfgecan be es-
timated by replacing:; sequentially to its harmonics and

subharmonics. Consider now that a degree of freedom is

given to everyw” (except one) and allows to extract spectral
shape, i.e., the relative amplitudes of partialsyujfcorre-
sponds to a subharmonic of trikg, the model must overfit
the given spectrum. From this point of view, searching true
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Fig. 2. Input spectrum for Fig. 1

. Estimate the ML model parameters by EM algorithm.
Here we only update’® and should be updated to

1 oo

o = f/ Py(n, k|z)dz. (13)

. Calculate AIC with equation (9). The number of free
parameters here i&}. When AIC takes minimum
value, ux+log(n—1) is the Fy estimate, and if not,
add1 to ¢ and return to stepl.

4. EXPERIMENTS

Fos and extraction of the spectral shape can also be hanExperiments were carried out to evaluate the performance

dled with information criterion. The process shown below
is done with all remaining tied-GMMs after the previous
process.

1. Replace the representative meang e logt where
t is an integer number whose initial value is 1. The
number of Gaussians limited below the Nyquist log-
frequency is denoted &%;.

of our algorithm against mixed sounds, both continuous and
discontinuous pitch variations by determining the accuracy
of F, detection.

4.1. Results for Simultaneous Speech

The algorithm was first tested on co-channel simultaneous
speech signals spoken by two speakers, from which contin-
uous pitch variations were expected. Each speech signal file



. NCLUSION
Table 1. Results for simultaneous speech 5. CONCLUSIONS

Speech signals Accuracy(%) We proposed an algorithm that enables estimation of the
Speaker 1\ Speaker 2| Speaker 1\ Speaker 2 number of underlying harmonic structures and multifile
‘myi ‘myP 90.1 83.0 and separation of mixed harmonic structures with spectral
myi Fym’ 748 92.8 dpmain procedure. It showed high perfo_rman_ce_for both
Fym’ Fym’ 86.2 9.6 simultaneous speech and polyphonic music. Still, improve-
ment is expected by applying temporal information avail-
Table 2. Results for polyphonic music able, incorporating variance into the model parameters also
Expermiental data as a variable or by introducing a priori probability distribu-
- Accuracy(%) .
Composer & Title | Instrument tion of the model parameters, etc.
J. Pahelbel: “Kanon” Violin 92.7
J. S. Bach: “Ricercara 6” Violin 87.7 6. REFERENCES
J. S. Bach: "BWV 1046 no.1, mov.4] Oboe 89.2 [1] K. Kashino, K. Nakadai, T. Kinoshita and H. Tanaka, “Or-
J. S. Bach: "Menuet” Piano 84.2 ganization of Hierarchical Perceptual Sounds: Music Scene

Analysis with Autonomous Processing Modules and a Quanti-

was artificially created by mixing two independent speech tive Information Integration Mechanismroc. IJCAL Vol. 1,
signals of the ATR Speech Database dB signal-to-signal pp. 158-164, 1995. ) o
ratio. All signals were digitized at 12 kHz sampling rate and [2] M. Goto, “A Predominant-FO Estimation Method for CD
analyzed with Hamming window where frame length and Recordlngs: MAP Estimation Using EM Algorithm for Adap-
shift were 64 ms and 10 ms, respectively. Hand-labéled tive Tone Models, Proc. ICASSP20QMVol. 5, pp. 3365-3368,
contours, also included in the database, were used as reflig] :egz(?qt. dM.D “Bavsian H ic Models for M

ren Th r rat for the r tivi ker g (o] .SI an M. fivy, aysian _armonlc oaels 1or Mu-
:he(z)V\?r??n tabelea;CULZf))él ?meysi’ gn d ‘?yrﬁ:sgte;n diosrp:ar‘nzlj a sical Pitch Estimation and Analysis,"Proc. ICASSP20Q2

) .. Vol. 2, pp. 1769-1772, 2002.

and a female speaker. Deviations o%€t from the refer- I M Wupg Wang and G. J. Brown. “A Multi-pitch Trackin
ences were deemed as gross errors. The initial number 0{ o 9 L . b g

. Algorithm for Noisy Speech,1CASSP2002\ol. 1, pp. 369—
the tied GMMs was set t8 and the frequency range was 3792 1995, y=p ad PP

from 70 Hz to 140 Hz, ando was a53|gr_1ed 10.45. As a [5] K. Nishi, M. Abe and S. Ando, “Multiple Pitch Tracking and
result, as for the concurrent speech with male an<_j female” " | monic Segregation Algorithm for Auditory Scene Analy-
speakers, the accuracy for male speaker was relatively low. sis” Trans. SICEVol. 34, No. 6, pp. 483-490, 1998, (in
Atthe second process stated in Section 3, AIC rather prefers  japanese).

tu; to be positioned at as higher frequency as it can, since theg) pm. Abe and S. Ando, “Auditory Scene Analysis Based on
number of free parameters can be decreased. Accordingly, = Time-Frequency Integration of Shared FM and AM (ll): Op-
if both the pitch and the amplitude of one utterence were timum Time-Domain Integration and Stream Sound Recon-
specificially lower than another, it was disregarded. Some  struction,” Trans. IEICE Vol. J83-D-Il, No. 2, pp. 468-477,
other gross errors were found at the first process mainly due 2000, (in Japanese).

to uttered consonants. Since we focused only on harmonid7] D. Chazan, Y. Stettiner and D. Malah, “Optimal Multi-pitch
structure, gross errors caused by ‘noise’, including unvoiced  Estimation Using the EM Algorithm for Co-channel Speech

consonants, were difficult to avoid. Separation,Proc. ICASSP93Vol. 2, pp. 728-731, 1993.
[8] A. Klapuri, T. Virtanen and J. Holm, “Robust Multipitch Esti-
4.2. Results for Recorded Polyphonic Music mation for the Analysis and Manipulation of Polyphonic Mu-

sical Signals,1n Proc. COST-G6 Conference on Digital Audio

The algorithm was next tested on 4 pieces of music in the Effects pp. 233-236, 2000.

RWC Music Database and CD recordings. The musical sig- . o . .
nals were sampled at 44.1 kHz and analyzed with Hammin (O] T. Virtanen and A. Klapuri, —“Separation of Harmonic
i P ’ y ) g Sounds Using Linear Models for the Overtone Seriéxfc.

window where frame length and frame shift were 50 ms ICASSP2002V0l. 2, pp. 1757-1760, 2002.

and 10_ ms, respectively. ReferenE@s_were hand-!abel_ed 10] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum
according to the notes and the durations transcribed in the | ixalihood from Incomplete Data via the EM Algorithm,J.
musical score. The accuracy rates for the music pieces are  of Royal StatisticalSociety Series\®I. 39, pp. 1-38, 1977.

shown in table 2. The initial number of tied GMMs was [11] H. Akaike, “Information Theory and an Extension of the

set to5, the frequency range was fromd8 Hz to 215 Hz, Maximum Likelihood Principle,” 2nd Inter. Symp. on In-
ando was assigned t0.53. The results show the algorithm formation Theory Akademia Kiado, Budapest, pp. 267-281,
worked well with the violin performance. As for the piano 1973.

performance, though fast decay of piano sound made detec-
tion difficult, Fiys before its decay were extracted properly.



