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ABSTRACT

In this paper, a method for separation of harmonic struc-
tures of co-channel input concurrent sounds is described. A
model for multiple harmonic structures is constructed with
a mixture of tied Gaussian mixtures, from which a single
harmonic structure is modeled. Our algorithm enables esti-
mation of both the number and the shape of the underlying
harmonic structures, based on a maximum likelihood esti-
mation of the model parameters using EM algorithm and
an information criterion. It operates without restriction on
the number of mixed sounds and varieties of sound sources,
and extracts accurate fundamental frequencies continuously
with simple procedures in spectral domain. Experiments
showed high performance of the algorithm for both simul-
taneous speech and polyphonic music.

1. INTRODUCTION

Co-channel sound separation technique plays an important
role in many applications such as automatic transcription
of music, sound source identification, audio coding, audio
enhancement and robust speech recognition. However, sep-
aration from a single input is a complicated inverse problem
that is difficult to be solved analytically. Multi-pitch esti-
mation (MPE) technique has been generally taken as one of
the most useful approach for it.

In early attempts for MPE, the aim was automatic tran-
scription of music but most of them were limited in regard
to varieties of instruments, number of simultaneous sounds,
and range and resolution of extractable pitch. Lately, how-
ever, Kashino et al. proposed a method that enables tran-
scription of polyphonic music even if there are several kinds
of instruments included [1]. Goto presented a method for
extracting objective single sound from polyphonic musical
signals without restriction on the number of simultaneous
sounds [2]. Although both methods are superior for their
respective purposes, they are not suited for separating every
individual sound.

Meanwhile, numerous methods of MPE aiming espe-
cially at sound separation have been reported, mainly in mu-
sical signal processing [3], speech signal processing [4] and

auditory scene analysis [5, 6]. Chazan addressed a speech
separation method by introducing a time warped signal mod-
el that allows a continuous pitch variation within a long
analysis frame [7]. The robustness of this method is limited
to the continuous pitch variation, and it can not cope with
discontinuous pitch variation such as in piano performance.
Klapuri described a robust MPE method [8] and Virtanen
constructed a sound separation system by sophisticating it
[9]. While this system is prominent in respect that it enables
extraction not only of the amplitudes of the partials but even
of the phases by parameter estimation of time domain sig-
nal model. However, it requires a number of stages such as
bandwise processing, partial removing, spectral smoothing,
and sinusoidal modeling analysis.

Our objective is to develop a method that estimates the
number of underlying harmonic structures and separates th-
em without restriction on the number of concurrent sounds
and a variety of sound sources, and is also able to extract
pitches accurately as continuous values, with much more
simple procedure in the spectral domain.

2. A MAXIMUM LIKELIHOOD FORMULATION
2.1. Model of Harmonic Structures

The use of window function and the varying pitch within
a short time single analysis frame inevitably cause widen-
ing of the spectral harmonics which makes it difficult to
extract the precise value of fundamental frequencies (F0s)
and to separate close partials. First, we assume that each
widened partial is a probability distribution of frequencies,
approximated by a Gaussian distribution model. Therefore,
a single harmonic structure can then be modeled by a tied
Gassian mixture model (tied-GMM), in which their means
have only 1 degree of freedom. In log-frequency scale,
means of tied-GMM are denoted here asµk = {µk, · · · ,
µk+log n, · · · , µk+log Nk} whereµk ideally corresponds
to theF0 of kth sound andn denotes the index of partials.
We then introduce a model of multiple harmonic structures
Pθ(x) which is a mixture ofK tied-GMMs whose model
parameterθ is denoted as

{θ} = {µk, wk, σ | k=1, · · · ,K}, (1)



wherewk = {wk
1 , · · · , wk

n, · · · , wk
Nk
} andσ indicate the

weights and variance (that is briefly assumed here as a con-
stant) of the respective Gaussian distributions.

2.2. Model Parameter Estimation using EM Algorithm

Since the observed spectral density functionf(x), where
x denotes log-frequency, is considered to be generated from
the model of multiple harmonic structures, the log-likelihood
difference in accordance with an update of the model pa-
rameterθ to θ̄ is

f(x) log Pθ̄(x)− f(x) log Pθ(x) = f(x) log
Pθ̄(x)
Pθ(x)

. (2)

Although Dempster formulated EM algorithm [10] in order
to maximize the mean log-likelihood consideringf(x) as a
probabilistic density function, it can also be formulated in
the same way even iff(x) is replaced with spectral density
function. By taking expectation of both sides with respect
toPθ(n, k|x), representing the probability of{n, k}-labeled
Gaussian distribution from whichx is generated,Q function
is derived in the right-hand side.Q function is by

Q(θ,θ̄)=
K∑

k=1

Nk∑
n

∫ ∞

−∞
Pθ(n,k|x)f(x) log Pθ̄(x,n,k)dx, (3)

thus it yields∫ ∞

−∞

{
f(x) log Pθ̄(x)− f(x) log Pθ(x)

}
dx

≥ Q(θ, θ̄)−Q(θ, θ). (4)

By obtainingθ̄ that maximizes theQ function, the log-likeli-
hood of the model of multiple harmonic structures with re-
spect to everyx will monotonically increase. A posteriori
probabilityPθ(n, k|x) in equation (3) is given as

Pθ(n, k|x) =
Pθ(x, n, k)

Pθ(x)
, (5)

=
wk

n · g(x|µk+log n, σ2)∑
n

∑

k

wk
n · g(x|µk+log n, σ2)

, (6)

g(x|x0,σ
2) =

1√
2πσ2

exp
{
− (x− x0)2

2σ2

}
, (7)

whereg(x|x0,σ
2) is a Gaussian distribution. By iterating

in two steps as follows, the model parameterθ locally con-
verges to ML estimates.

Initial-step

Initialize the model parameterθ.

Expectaion-step

CalculateQ(θ, θ̄) with equation (3).

Maximization-step

MaximizeQ(θ, θ̄) to obtain the next
estimate

θ = argmax
θ̄

Q(θ, θ̄). (8)

Replaceθ̄ with θ and repeat from
the Expectation-step.

2.3. Physical Interpretation as Clustering

From another viewpoint, this ML procedure can be under-
stood as a clustering method under a harmonic constraint
between Gaussian mixture components where spectral den-
sity function is considered as a statistical distribution of
micro-energies along frequency axis. As we regardµk as
cluster centroids, the posteriori probability in equation (6)
as a membership degree of each micro-energy and the log-
likelihood Pθ̄(x, n, k) as a distance function between cen-
troid µk and a micro-energy, thus theQ function in equation
(3) turns out to be the objective function for fuzzy cluster-
ing. We call this concept “Harmonic Clustering.”

3. SEPARATION OF HARMONIC STRUCTURES

The separation scheme as a whole consists of only two pro-
cesses. In 3.1, we adopt one of the most widely used infor-
mation criterion, on which both processes described in 3.2
and 3.3 are based.

3.1. Criterion of Model Selection

Provided multiple different model candidates exist, the op-
timal model must somehow be selected. Here we introduce
Akaike Information Criterion (AIC) proposed by Akaike in
1973 [11]. AIC is given by

AIC =−2×(maximum log-likelihood of model)
+2×(number of free parameters of model), (9)

and is known to offers proper estimate of the number of free
parameters.

3.2. Estimation of the number of harmonic structures

It is generally known that ML estimates depend highly on
initial values and may often converge to undesirable values.
To avoid this, we first prepare extra amount of tied-GMMs
in the model in order to raise possibility of obtaining the true
values. Then, obviously, the model may over-fit the given
observed specrum. If one Gaussian is enough for approxi-
mating the shape of one partial, the same number of under-
lying harmonic structures must be enough with tied-GMMs.
And this number can be estimated by reducing tied-GMM
one after another until AIC takes minimum value. The spe-
cific operation is as follows:

1. Set initial values of{µ1, · · · , µK} in the limited fre-
quency range.

2. Estimate the ML model parameters by EM algorithm.
However,wk

n is constrained here as

wk
1 = wk

2 = · · · = wk
Nk

(= wk). (10)

Thiswk represents the degree of predominance ofkth
tied-GMM. In Maximization-step, model parameters
µk andwk should be updated



µ̄k =

Nk∑
n=1

∫ ∞

−∞
(x− log n)Pθ(n,k|x)f(x)dx

Nk∑
n=1

∫ ∞

−∞
Pθ(n, k|x)f(x)dx

, (11)

w̄k =
1

FNk

Nk∑
n=1

∫ ∞

−∞
Pθ(n, k|x)dx, (12)

whereF is an integral off(x) with respect tox.

3. Calculate AIC with equation (9). Since there are two
free parameters for each tied-GMM, the model has
2 × K free parameters altogether. If the AIC in-
creases, the number of tied-GMMs just before they
are reduced in step4 will be the estimate of the num-
ber of harmonic structures.

4. Remove tied-GMM(s) that conforms to either of the
two conditions given below, and repeat from step 2.

• The one whosewk is the minimum among all.
Since the contribution to the maximum log-lik-
elihood must be the least.

• The one whosewk is smaller if the two adja-
cent representative means become closer than a
certain distance (threshold). Since the two rep-
resentative means are presumed to converge to
the same optimal solution.

An example of how this process actually works is shown in
Fig.1 and the input spectrum used in it is depicted in Fig.2.
The broken line represents the point where the model pa-
rameters were judged to be converged and the line graph
indicates the value of AIC. Since AIC takes minimum value
when three tied GMMs are left, the estimate number here is
3.

3.3. Estimation ofF0 and Spectral Shape
In the previous process, the ML procedure allows to aqcuire
local optimal solutions ofµk without distinction of trueF0s,
harmonics or subharmonics. Therefore, trueF0 can be es-
timated by replacingµk sequentially to its harmonics and
subharmonics. Consider now that a degree of freedom is
given to everywk

n (except one) and allows to extract spectral
shape, i.e., the relative amplitudes of partials. Ifµk corre-
sponds to a subharmonic of trueF0, the model must overfit
the given spectrum. From this point of view, searching true
F0s and extraction of the spectral shape can also be han-
dled with information criterion. The process shown below
is done with all remaining tied-GMMs after the previous
process.

1. Replace the representative means toµk+log t where
t is an integer number whose initial value is 1. The
number of Gaussians limited below the Nyquist log-
frequency is denoted asN t

k.
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Fig. 1. Example of convergence to the true values
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Fig. 2. Input spectrum for Fig. 1

2. Estimate the ML model parameters by EM algorithm.
Here we only updatewk

n and should be updated to

w̄k
n =

1
F

∫ ∞

−∞
Pθ(n, k|x)dx. (13)

3. Calculate AIC with equation (9). The number of free
parameters here isN t

k. When AIC takes minimum
value,µk+log(n−1) is theF0 estimate, and if not,
add1 to t and return to step1.

4. EXPERIMENTS

Experiments were carried out to evaluate the performance
of our algorithm against mixed sounds, both continuous and
discontinuous pitch variations by determining the accuracy
of F0 detection.

4.1. Results for Simultaneous Speech
The algorithm was first tested on co-channel simultaneous
speech signals spoken by two speakers, from which contin-
uous pitch variations were expected. Each speech signal file



Table 1. Results for simultaneous speech
Speech signals Accuracy(%)

Speaker 1 Speaker 2 Speaker 1 Speaker 2

‘myi’ ‘myi’ 90.1 83.0
‘myi’ ‘fym’ 74.8 92.8
‘fym’ ‘fym’ 86.2 92.6

Table 2. Results for polyphonic music
Expermiental data

Composer & Title Instrument
Accuracy(%)

J. Pahelbel: “Kanon” Violin 92.7
J. S. Bach: “Ricercarèa 6” Violin 87.7
J. S. Bach: “BWV 1046 no.1, mov.4” Oboe 89.2
J. S. Bach: “Menuet” Piano 84.2

was artificially created by mixing two independent speech
signals of the ATR Speech Database at0 dB signal-to-signal
ratio. All signals were digitized at 12 kHz sampling rate and
analyzed with Hamming window where frame length and
shift were 64 ms and 10 ms, respectively. Hand-labeledF0

contours, also included in the database, were used as ref-
erences. The accuracy rates for the respective speakers are
shown in table 1. Label ‘myi’ and ‘fym’ stand for a male
and a female speaker. Deviations over5% from the refer-
ences were deemed as gross errors. The initial number of
the tied GMMs was set to3 and the frequency range was
from 70 Hz to 140 Hz, andσ was assigned to0.45. As a
result, as for the concurrent speech with male and female
speakers, the accuracy for male speaker was relatively low.
At the second process stated in Section 3, AIC rather prefers
µk to be positioned at as higher frequency as it can, since the
number of free parameters can be decreased. Accordingly,
if both the pitch and the amplitude of one utterence were
specificially lower than another, it was disregarded. Some
other gross errors were found at the first process mainly due
to uttered consonants. Since we focused only on harmonic
structure, gross errors caused by ‘noise’, including unvoiced
consonants, were difficult to avoid.

4.2. Results for Recorded Polyphonic Music

The algorithm was next tested on 4 pieces of music in the
RWC Music Database and CD recordings. The musical sig-
nals were sampled at 44.1 kHz and analyzed with Hamming
window where frame length and frame shift were 50 ms
and 10 ms, respectively. ReferenceF0s were hand-labeled
according to the notes and the durations transcribed in the
musical score. The accuracy rates for the music pieces are
shown in table 2. The initial number of tied GMMs was
set to5, the frequency range was from108 Hz to 215 Hz,
andσ was assigned to0.53. The results show the algorithm
worked well with the violin performance. As for the piano
performance, though fast decay of piano sound made detec-
tion difficult, F0s before its decay were extracted properly.

5. CONCLUSIONS

We proposed an algorithm that enables estimation of the
number of underlying harmonic structures and multipleF0s
and separation of mixed harmonic structures with spectral
domain procedure. It showed high performance for both
simultaneous speech and polyphonic music. Still, improve-
ment is expected by applying temporal information avail-
able, incorporating variance into the model parameters also
as a variable or by introducing a priori probability distribu-
tion of the model parameters, etc.
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