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Abstract

In this paper, a method for extracting fundamental fre-
quencies (F0s) from single channel input signal of con-
current sounds is described. By considering that an ob-
served spectral density distribution is a statistical distri-
bution of (imaginary) micro-energies, we attempt to clas-
sify them into each sound by the use of clustering prin-
ciple. We call this approach a “Harmonic Clustering.”
One of the formulation of this clustering can be expressed
in same way as a maximum likelihood of Gaussian mix-
ture model (GMM) using EM algorithm. Our algorithm
enables to estimate not onlyF0s but also a number and
each spectral envelope of underlying harmonic structure
on the basis of an information criterion. It operates with-
out restriction of a number of mixed sounds and a vari-
ety of sound sources, and extractsF0s as accurate values
with spectral domain procedures. Experimental results
showed high performance of our algorithm.

1. Introduction

Multi-pitch estimation (MPE) technique of a single chan-
nel input is surely practicable in many applications such
as automatic transcription of music, sound source iden-
tification, signal-to-MIDI converter, audio coding, audio
enhancement and robust speech recognition.

In early attempts for MPE, the aim was to material-
ize automatic transcription of music but were firmly re-
stricted in regard to a variety of instruments, a number
of simultaneous sounds, and also a range and a resolu-
tion of extractable pitch. Lately, Kashino et al. proposed
a method which can transcribe polyphonic music even if
there were several kinds of instruments included [1].

Recently, MPE which enables to detect various infor-
mation (such as number of simultaneous sounds, spec-
tral envelopes, etc.) at the same time accompanied with
F0s has been put stress for multi purposes, and numer-
ous methods have been reported mainly in musical signal
processing [2, 3], speech signal processing [5, 6] and au-
ditory scene analysis [7, 8]. Goto presented a method for
extracting objective single sound from polyphonic musi-
cal signals without restriction of the number of simulta-

neous sounds [2]. This method offers an optimal spec-
tral envelope of the single sound by introducing a pri-
ori distrubution. Chazan addressed a speech separation
method by introducing a time warped signal model which
allows a continuous pitch variations within a long analy-
sis frame [6] and Klapuri described a robust MPE method
[3] and Virtanen constructed a sophisticated sound sepa-
ration system by implicating it [4]. These two methods
are prominent in respect of a capability of extracting not
only the amplitudes of the partials but even the phases due
to a parameter estimation of time domain signal model.

However, most of the previous methods still have not
included a specific process of detecting the number of si-
multaneous sounds. Our objective is to develop a new al-
gorithm which detects not onlyF0s but also a number of
simultaneous sounds and spectral envelopes respectively
as the solutions of an optimization problem.

2. Harmonic Clustering

2.1. General Formulation of Spectral Clustering

An influence of a window function and a varying pitch
within the short time single analysis frame inevitably
cause widening of the spectral harmonics which makes
it difficult to extract the precise value ofF0s and partial
energies. We consider each widened partial as a statisti-
cal distribution of micro-energies and attempt to classify
them into several harmonic structures by use of cluster-
ing principle. This principle is based on a formation of
a harmonic cluster which consists of several tied clus-
ters, constrained by a representative centroid. In log-
frequency scale, cluster centroids contained in thekth
harmonic cluster are denoted here asµk = {µk, · · · ,
µk +log n, · · · , µk+log Nk} whereµk is the represen-
tative centroid and is expected to be theF0 of kth sound
and n denotes the index of partials. Therefore, classi-
fying micro-energies withK harmonic clusters is identi-
cal with separating spectral components intoK harmonic
structures. If we denote a distance between one cen-
troid µk +log n and one micro-energy positioned in log-
frequencyx asd(x, µk+log n), a membership degree as
pk

n(x), and the number of micro-energies asf(x), i.e., a



spectral density, the total distance function, which should
be minimized, is represented as

J =
K∑

k=1

Nk∑
n=1

∫ ∞

−∞
f(x)pk

n(x)d(x, µk+log n)dx (1)

whereNk denotes the number of clusters in thekth har-
monic cluster. This function can be minimized byk-
means algorithm, for instance, ifd(x, µk +log n) is the
square of euclidean distance andpk

n(x) is the rectangu-
larly divided uniform distribution.

2.2. Correspondence withQ-function

The objective function in equation (1) can also be in-
terpreted as aQ-function of EM algorithm. First we
model akth harmonic structure with several Gaussian
distributions, whose means are constrained by the rep-
resentative meanµk and denoted asµk = {µk, · · · ,
µk +log n, · · · , µk+log Nk}. We briefly call this model
as harmonic-GMM (Gaussian mixture model). We then
introduce a model of multiple harmonic structuresPθ(x)
which is a mixture ofK harmonic-GMMs whose model
parameterθ is denoted as

{θ} = {µk, wk, σ | k=1, · · · , K}, (2)

wherewk = {wk
1 , · · · , wk

n, · · · , wk
Nk
} andσ indicate the

weights and variance (which is assumed here as a con-
stant) of the respective Gaussian distributions.

As we consider that the normalized spectral density
functionf(x) is a probability distribution of frequencies
(events) which are generated from the model of multiple
harmonic structures, the log-likelihood difference in ac-
cordance with an update of the model parameterθ to θ̄ is

f(x) log Pθ̄(x)− f(x) log Pθ(x) = f(x) log
Pθ̄(x)
Pθ(x)

. (3)

Dempster formulated EM algorithm [9] in order to max-
imize the mean log-likelihood by taking expectation of
both sides with respect toPθ(n, k|x) which represents
the probability of the{n, k}-labeled Gaussian distribu-
tion from whichx is generated. TheQ-function will be
derived in the right-hand side and given as

Q(θ,θ̄)=
K∑

k=1

Nk∑
n=1

∫ ∞

−∞
Pθ(n,k|x)f(x) log Pθ̄(x,n,k)dx. (4)

In comparison with equation (1), it can be considered to
be one of the objective function formulated above.

2.3. Model Parameter Estimation by EM Algorithm

Since an inequality is derived as∫ ∞

−∞

{
f(x) log Pθ̄(x)− f(x) log Pθ(x)

}
dx

≥ Q(θ, θ̄)−Q(θ, θ), (5)

the log-likelihood of the model of multiple harmonic

structures with respect to everyx will be monotonously
increased by obtaininḡθ which maximizes theQ-
function. A posteriori probabilityPθ(n, k|x) in equation
(4) is given as

Pθ(n, k|x) =
Pθ(x, n, k)

Pθ(x)
, (6)

=
wk

n · g(x|µk+log n, σ2)∑
n

∑

k

wk
n · g(x|µk+log n, σ2)

, (7)

g(x|x0,σ
2) =

1√
2πσ2

exp
{
− (x− x0)2

2σ2

}
, (8)

where g(x|x0,σ
2) is a Gaussian distribution. By

the iterative procedure of E (Expectation)-step and M
(Maximization)-step, the model parameterθ locally con-
verges to ML estimates.

3. F0 Extraction Algorithm

TheF0 extraction scheme as a whole consists of two pro-
cesses. In 3.1, we adopt one of the most widely used
information criterion on which both processes described
in 3.2 and 3.3, are based.

3.1. Criterion of Model Selection

Provided multiple different model candidates exist, the
optimal model must somehow be judged. Here we in-
troduce Akaike Information Criterion (AIC) which was
proposed by Akaike in 1973 [10]. AIC is given by

AIC =−2×(maximum log-likelihood of model)
+2×(number of free parameters of model), (9)

whose minimum offers a proper estimate of the number
of free parameters.

3.2. Estimation of a Number of Harmonic Structures

It is generally known that ML estimates firmly depend
on initial values and may often converge to undesirable
values. To avoid this, we first prepare extra amount of
harmonic-GMMs in the model in order to raise possibility
of obtaining the true values. Then, obviously, the model
may overfit the given observed specrum. If one Gaussian
is enough for approximating the shape of one partial, the
same number of underlying harmonic structures must be
enough with the harmonic-GMMs. And this number can
be estimated by reducing harmonic-GMM one after an-
other until they become the proper number on the basis
of AIC. Although there may be exception, we assume the
number of harmonic structures as a number of simultane-
ous sounds. The specific operation is as follows:

1. Set initial values of{µ1, · · · , µK} in the limited
frequency range.

2. Estimate the ML model parameters by EM algo-
rithm. However,wk

n is constrained here as

wk
1 = wk

2 = · · · = wk
Nk

(= wk). (10)
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Figure 1: Updates of representative meansµk

This wk represents the degree of predominance of
kth harmonic-GMM. In the M-step, model param-
etersµk andwk should be updated to

µ̄k =

Nk∑
n=1

∫ ∞

−∞
(x− log n)Pθ(n,k|x)f(x)dx

Nk∑
n=1

∫ ∞

−∞
Pθ(n, k|x)f(x)dx

,(11)

w̄k =
1

FNk

Nk∑
n=1

∫ ∞

−∞
Pθ(n, k|x)dx, (12)

whereF is an integral off(x) with respect tox.

3. Calculate AIC. Since there are two free parameters
for each harmonic-GMM, the model has2×K free
parameters altogether. The number of harmonic-
GMMs when AIC takes minimum corresponds to
the number of simultaneous sounds.

4. Remove the harmonic-GMM(s) which conforms
either of the two conditions as below and repeat
from step 2.

• The one whosewk is the minimum among
all. Since the contribution to the maximum
log-likelihood must be the least.

• The one whosewk is smaller if the two adja-
cent representative means become closer than
a certain distance (threshold). Since the two
representative means are presumed to con-
verge to the same optimal solution.

An example of how this process actually operates is
shown in Fig.1. The broken line represents the point
where the model parameters were judged to be converged
and the line graph indicates the value of AIC at each
point. Since AIC takes minimum when three harmonic-
GMMs remain, the estimate number here is3.
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Figure 2: A harmonic-GMM whenµk is 1/2 of trueF0

3.3. Extraction of F0 and Spectral Envelope

In the previous process, the ML procedure allows to
aqcuire local optimal solutions ofµk without distinction
of the trueF0s, harmonics or subharmonics. Therefore,
the trueF0s must somehow be discovered by replacing
µk each by each to their multiples. Consider now that a
degree of freedom is given to everywk

n and consequently
allows to extract the spectral envelope, i.e., the relative
amplitudes of the partials. Ifµk corresponds to subhar-
monics, the model must overfit (Fig 2). From this point
of view, the problem of obtaining the trueF0s and the
spectral envelope can also be handled with the informa-
tion criterion. The process shown below is done with all
remaining harmonic-GMMs after the previous process.

1. Replace the representative means toµk+log t where
t is an integer number whose initial value is 1. The
number of Gaussians limited below the Nyquist
log-frequency is denoted asN t

k.

2. Estimate the ML model parameters by EM algo-
rithm. Here we only updatewk

n and should be up-
dated to

w̄k
n =

1
F

∫ ∞

−∞
Pθ(n, k|x)dx. (13)

3. Calculate AIC. The number of free parameters here
is N t

k. The place of the representative mean when
AIC takes minimum is considered as theF0 esti-
mate, and if not, add1 to t and return to step1.

4. Operation Experiments

Experiments were carried out to validate the performance
of our algorithm with polyphonic music by evaluating the



Table 1: Results for polyphonic music
Expermiental data

Composer & Title Instruments Accuracy(%)

J. Pahelbel: “Kanon” Violins 92.7
J. S. Bach: “Menuet” Piano 74.9
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Johann Pachelbel
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Figure 3: A F0 detection result and the corresponding
score of “Kanon”

accuracy ofF0 extraction.

4.1. Experimental Condition

The algorithm was tested on 2 pieces of music which
were performed by three violinists and a pianist, respec-
tively. All musical signals were digitized at 44.1 kHz
and analyzed with Hamming window where frame length
and frame shift were 46 ms and 10 ms. ReferenceF0s
were hand-labeled according to the notes and the dura-
tions transcribed in the musical score. Detection accu-
racy was calculated as a percentage of frames at which
F0s were correctly detected. The initial number of the
harmonic-GMMs was set to5, the frequency range was
from 108 Hz to215 Hz, andσ was assigned to0.53.

4.2. Results for Recorded Polyphonic Music

The accuracy rates are shown in table 2 and the exam-
ple of F0 detection result is shown in Fig 3. The results
showed that the algorithm worked well with the violin
performance. As for the piano performance, though fast
decay of piano sound made the detection difficult,F0s
before its decay were mostly extracted properly.

5. Conclusions

We proposed an algorithm which enables to detect a
number of underlying harmonic structures and respec-
tive F0s and spectral envelopes as the solutions of an

optimal problem. It showed a high performance for
recorded polyphonic music. Still, several improvements
are prospective by applying temporal information avail-
able, incorporating variance into the model parameters
also as a variable or by introducing a priori probability
distribution of the model parameters, etc.
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