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ABSTRACT onW andH, which induce sparse solutions. However, it iffidult

) . o to use the measures between a data matrix and a model directly since
Measures of sparsity are useful in many aspects of audio signal prgse measures are often non-linear and ndfledéntiable, and it is
cessing including speech enhancement, audio coding and singifgactable to solve the NMF problem.

voice enhancement, and the well-known method for these applica-
tions is non-negative matrix factorization (NMF), which decomposesL
a non-negative data matrix into two non-negative matrices. AIthougIB
prévious studies on NMF have focgsed on the sparsity of the tW9vith 0 < p < 2 and derive a convergence-guaranteed algorithm that
matrices, the sparsity of reconstruction errors between a data matrx| cists of multiplicative update equations Tarand H based on
Qnd the two matrices IS also important, since designing the sparsqy]e auxiliary function principle [10, 11]. The constgntontrols the
is equivalent to assuming the nature of the errors. We propose arsity of the reconstruction errors. To examine teoeof varying

new NMF technique, which we calldg-norm NMF, that minimizes . i .
the L, norm of the reconstruction errors, and derive a computation-p’ we apply the proposed algorithm to singing voice enhancement

ally efficient algorithm forL,-norm NMF according to an auxiliary for monaural audio signals. .
function principle. This algorithm can be generalized for the factor- We henceforth denote sets of real values and non-negative real
ization of a real-valued matrix into the product of two real-valuedValues aR andR.o, respectively.

matrices. We apply the algorithm to singing voice enhancement and

In this paper, we propose a new NMF technique, which we called
p-norm NMF, that minimizes th&, norm of reconstruction errors
etween a data matrix and a model. We formulatenorm NMF

show that adequately selectipgmproves the enhancement. 2. Lp-NORM NON-NEGATIVE MATRIX FACTORIZATION
Index Terms— Non-negative matrix factorizatioh,, norm, aux-
iliary function principle 2.1. Problem setting

Let us define frequency, time, and basis indexes, respectivelycas
[0,Q-1],t € [0,T — 1] andk € [0,K — 1] such thatK < Q and
K < T. Given a non-negative data mati¥x:= {Y,, t}ocw<o-10<t<T-1,
Lo-norm NMF is the problem of minimizing thie, norm

1. INTRODUCTION

Non-negative matrix factorization (NMF) [1] is a powerful technique

that approximates a data mativxby using the product of two non-

negative matrice®/ andH. NMF has been actively studied in many Y p_ _ P

scientific and engineering fields in recent years (see [2]). In partic- LW H) = 11Y = WHIlp = ;: 'y‘”" Zk:W“'khk"' @

ular, in the field of music signal processing, successful results were ’

obtained by regarding a magnitude spectrogram as a non-negativeiect to

matrix [3]. VK D W= 1 )
NMF is formulated as the problem of minimizing a measure be- w

tween a data matrix and a model. One standard measure is the Frohes .\, _ {We ok iS 2Q X K non-negative matrix andl = {hedie

nius norm, and it corresponds to assuming that the reconstructi BaKkxT ngvn-ar)iegative matrix. Eq. (2) is introduced to avoid an

errors are additive Gaussian noise. While NMF with the Frobeniu§hdeterminacy in the scaling. Whehis a magnitude spectrogram

errors. : ; ;
A smaller p induces the sparsity, and most of the entries of the es-

maMnea;suu(;ﬁ)ssci)f :;)larfggeges‘% . tr;c():rhnrw]? Zi\éesﬁ?:ﬁnagﬁsl}l,: L;Sn%drg]butsiwated data matrixVH are the same as those¥9fwhile the other
Y gnat p 9 q entries difer greatly from those of. On the other hand, a larger

rinciple component analysis [4, 5]. Many previous studies of NMF . . h h
Eave Bsed spgrseness mgasu[res ][6 7] Xegularizers [8] and priors es not induce the sparsity, and all the entries of the estm_wa_ted data
T trix may be non-zero. We thus assume that.theorm satisfies

This work was partly supported by JSPS Grant-in-Aid for Young Scien-o < p_ <2 WhiCh promotes sparsity. Note thgt whpn= 2, the
tists B Grant Number 26730100. objective function equals the NMF with Frobenius norm.
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2.2. Hficient algorithm based on auxiliary function principle factorization (,-norm MF).

. . . . o Lp-norm MF is the problem of finding real-valued matrida/sH
Since L(W, H) involves a summation ovek in the L, norm, itis 5 5 given real-valued data matriksuch that

intractable to solve the current minimization problem analytically. )
However, we can develop a computationalfficéent algorithm to wegain o JOMH) =11Y = WHIE,
find a locally optimal solution based on the auxiliary function prin- ’
ciple [10, 11]. subject to vk, wa,k =1

When applying an auxiliary function principle to the minimiza- @
tion problem, the first step is to define an upper bound function fowhere 0< p < 2 andJ (W, H) is the objective function.
the objective function. Introducing auxiliary variablés= {£,; €

Rsow, We derive 3.2. lterative algorithm based on auxiliary function principle

2
‘yw,t - wa.khm'p < ,E}Z‘yw.[ - wa,khkt| +(2-p¢,. (3 Asin Sec. 2,9(W H) involves summation ovek in the L, norm,
K K and we consider the upper bound ${W, H) to apply the auxil-

The proof of the inequality is described in Lemma 2 of [12]. Theiary function principle to the intractable minimization problem. The

equality of Eq. (3) holds if and only if inequality used in Eq. (3) is applicable (W, H), and the upper
bound of 7 (W, H) is the same as the right-hand side of Eq. (3). To
Sur = ‘yw,l - Zwmhk,t|. 4) derive the upper bound of the square function of Eq. (3), we can use
k the generalization of Jensen’s inequality yok, W, k, hk: € R, which

The term in the square function of Eq. (3) includes a summatiorvas employed in [12]:
overk, and we further derive the upper bound of the right-hand side

of Eqg. (3). Since the square function is a convex function, we can ’yw,t - waﬁkhk,t
invoke Jensen’s inequality: k

|t — Wi

ﬁw,t,k

2
| <

< (11)

2 1 ) wherea = {auik € RlotkB = {Butk € [0,1]}1x are auxiliary

(wa.khk,t) < Z T(Ww.khkt) (5)  variables subject t& @uik = Yot SxButk = 1. The equality of
k ko etk Eqg. (11) holds if and only if

whered = {4,k € Rsolwik @re auxiliary variables that sum to unity: _
Y dwik = 1. The equality of Eqg. (5) holds if and only if Yotk = Wokhee _'Bwv‘vk(; Woie e = ywi)' 12)
Aotk = % (6) The upper bound of *(W, H) can thus be described as
ko Wi Pie ¢
' . ootk — Wo kit
The upper bound of (W, H) can thus be described as T WH, ¢ a,8) = Z peb? Z l ,l,le tk’k by (2-pédy
" wt k wl
L7(WH,2,¢) (13)
= Z P2V — Yot Z Wokhit + Z i(ww,khk,,)z} By differentiating.7* (W, H, &, @, B) partially with respect taV and
ot K i Awik H and setting them at zero, we can obtain the update equations:
Y
+ )@= Pl ) S (B Wkt + Yoot — e Woiehie)
ot Wk S i (14)
We can derive update equations for the parameters, using the above trowtk ki
upper bound. By setting the partial derivative&f(W, H, &, 1) with > c;.ltwm,k(ﬁ;’llykww,khk't + Vot — 2w Wok hk,,t)
respect toV andH at zero and using Egs. (4) and (6), we obtain Py < Y Cigl W (15)
w Yo, wtk  wk
T T
WeWoli(YoCH o {(WHo CH ] (8) wherec,; is defined as Eq. (10).
He<Ho[{W(YoC)lo{W'(WHaC)}] 9)

whereo, o denote element-wise product and division, @i an  3.3. Relation toL,-norm NMF

Q x T matrix, whose ¢, t)-th element is
Cor = |yth _ Z W, kPt (10) and),, B.xt = 1. Choosings as in [12], we obtain the multiplicative
' o T update equations as in Egs. (8) and (9). Therefore, we can say that

Itis worth noting that each update equation consists of muItipIicatioﬂhe algorithm ofl-, NMF is a special case of that b} MF.

by a non-negative factor. Hence, it is guaranteed that the entries of
W andH are always non-negative when their initial values are set at4- APPLICATION TO SINGING VOICE ENHANCEMENT

non-negative values.

) The parameterg can be chosen arbitrarily subjectfg:k € Rso
‘ -p

4.1. Singing voice enhancement

3. Lp-NORM MATRIX FACTORIZATION In this section, we apply,-norm NMF to singing voice enhance-
ment whose aim is to extract a singing voice from a monaural mixed

audio signal consisting of vocal and accompaniment parts. Singing
voice enhancement is often used in music information retrieval
Although the algorithm in the previous section is for non-negative(MIR) applications such as automatic lyrics recognition [13, 14],
matrices, it can be generalized for real-valued matrices, according tutomatic singer identification [15], and automatic karaoke gener-
the auxiliary function principle. We call the probldmg-norm matrix  ators [16].

3.1. Problem setting
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When input audio signals are multichannel, we can use spatial 3000
cues, based on the fact that the vocal parts of music audio signals
are frequently mixed in the center of the sound field. However, for Fzsoo
monaural inputs, we need other cues instead of the spatial cues. 5000
g
4.2. Enhancement algorithm % 1500
We utilize the fact that there is aftBrence in spectrogram between E 1000 a
accompaniments and singing voices. Accompaniment sounds are 500 S X
generated by musical instruments, which reproduce approximately P
the same sounds every time they are played. We can see the spec- 0 5 ) 3 5 012
trograms of accompaniment signals as a low-rank matrix. In con- Time [s]
strast, singers fluctuate their singing voices to obtain musitedts . L
such as vibrato. The spectrograms of singing voices are relatively (@) Spectrogram of input audio signal.
high rank and sparse, and corresponds to reconstructions errors of 3000 ‘ :
Lp-norm NMF.
As mentioned in Sec. 2.1, the model spectrog¥slid of L,-norm = 2500
NMF is a non-negative matrix with the rank &f, and smallp in- s
duces sparsity of the reconstruction errors. Seti{randp at sufi- =, 2000
ciently small values, we expect the low-rank mawi to contain % 1500
accompaniment signals and the reconstruction eXend/H to con- =)
tain singing voice signals. E 1000 ;
Let the estimated magnitude spectrogram of a singing voice be "ok A
S = {8u)ocwen-10ctcT_1. First, an input signal containing a singing 500 T
voice and accompaniment is converted into a complex spectrogram 0 , ‘ i ‘ i
with the short-time Fourier transform (STFT). We regard the mag- o2 4 6 8 10 12
nitude spectrogram of the input signal as a non-negative matrix, and Time [s]
apply Lp-norm NMF to the magnitude spectrogram. The obtained (b) Spectrogram of audio signal after enhancement.

model spectrograrVH should correspond to the accompaniment,Fig. 1. Spectrogram examples of (a) a mixed audio signal and (b)
and the reconstruction errors between the observed magnitude spéice singing-voice-enhanced audio signal obtained with the proposed
trogram and the model spectrogram corresponds to the singing voiceethod.

The time-frequency components of the model spectrogram may be

larger than those of the observed spectrogram, and we desge  the NSDR of all the music pieces by the length of ik piece,

{w;}i. These criteria have also been employed in many previous stud-
g = Yot ZkWokhct Yot = Xk Wakhr) (16)  ies [5,17-21]. To calculate the SDR, we used the BSS Eval Tool-
Y Vot < ZkWokhke) | box [22,23].

) . . .. As an evaluation dataset, we used the MIR-1K dataset [24], fol-
The estimated magnitude spectrogram with the phase of the Orlglnf"lwing the evaluation framework in [5,17, 18]. The dataset consists

goTnllglex spectrogram is converted into an audio signal by the |nvers08r 1000 Chinese song clips performed by amateur singers. The du-

rations of the clips range from 4 to 13 s, and the audio signals are
monaural with a sampling rate of 16 kHz. The accompaniment and

5. EXPERIMENTAL EVALUATION vocal parts were recorded separately, and we could mix them with
. . any signal-to-noise ratio (SNR), where the SNR corresponds to the
5.1. Experimental conditions voice to accompaniment ratio. The accompaniment and vocal parts

To evaluate the performance of the proposed method, we conduct Y each clip were mixed at5 QB (accompaniment is louder), 0 dB
two experiments on singing voice enhancement: an evaluation ¢p@me level) and 5 dB (vocal is louder) SNRs.
the dfect of p, which controls sparsity, and frame lendh and a
comparison of our results with the state-of-the-art [5,17, 18]. 5.2. Hfect of sparsity and frame lengths

The criteria for evaluating the singing voice enhancement were
the normalized signal-to-distortion ratio (NSDR) and the globalWe first compared the proposed methoddrand F. We used
NSDR (GNSDR), given as p=0102---,20andF = 512 1024 2048 4096 sample points.

- ~ For STFT, the window function was the sine window, and the frame
NSDR( file; {fele, (X)) = SDR{ fie, (i) = SDREX e {Teh). (17)  ghifts were half the length of the frames. The number of bases was

2 WNSDR( £ e () set atk = 10. The er_1tries oW andH were initializeq random_ly.
GNSDR= S W ) (18)  There were 200 iterations, which is supposed to ifcsent empir-
1 1 .
. ically.
SDR( f}., ()) = 1010g, 2 fife (19) Fig. 1 shows one of the enhanced results obtained with the pro-
trts Litst) — 0

(Z[ f”t)( P ft) -3, f fl’ posed method. The figures show the spectrograms of the input sig-
R nal and the enhanced result. We can see that most of the accompa-
where fi;, fi; andx; denote the estimated signal, the target signalnying sounds (vertically and horizontally smooth components) are
and the input signal of theth piece. NSDR represents the im- suppressed, and the singing voice component of the spectrogram is
provement in SDR, and GNSDR denotes the weighted averages ofearer than that of the input spectrogram.
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(a) GNSDR at-5 dB SNR. (b) GNSDR at 0 dB SNR. (c) GNSDR at 5 dB SNR.

Fig. 2. Global normalized signal-to-distortion ratio (GNSDR) of the proposed method with respgcf thie L, norm and frame length.
Red, blue, green and purple points corresponid to 512 1024 2048 4096 sample points. The results are for{&)dB, (b) 0 dB, and (c) 5
dB SNRs.

Table 1. Global normalized signal-to-distortion ratio (GNSDR) comparison with previous stugigsnotes the length of a frame in sample
point. Hsu, Rafii and Huang represent the corresponding methods [5,17, 18].

SI\IIIILDl[J(;B] Prolp;oieldorznfthod ProgoiezdoTsethod Hsu[17] Rafii[18] Huang[5]

-5 284 (p=16) 370 (p=17) -0.51 052 151

0 193 (p=10) 195 (p=1.0) 091 111 2.37

5 143 (p=0.8) 1.04 (p = 0.8) 0.17 1.10 257
@ Fig. 3 shows the distributions of NSDRs for each SNR. The re-
= sults were for p, F) = (1.7,2048) (1.0, 2048) (0.8, 1024) for SNRs
S of —5,0,5 dB. Since most of the NSDRs exceeded 0 dB, and we can
S o | i confirm that the proposed method worked well for most of the input
S § i signals.
S 1o ; ; o
% Q — 1 5.3. Comparison with previous studies
Q ! T \—“ - .
T © : : : Finally, we compared the proposed method with the state-of-the-
sl T T art [5,17,18]. The results are summarized in Tab. 1. The proposed
2 ] method withF = 1024 outperformed two previous methods for all
3 E input SNRs. While the GNSDRs of the proposed method were lower
N g than those of [5] at SNRs of 0 and 5 dB, the GNSDR with the pro-
g _‘5 (‘) é posed method was®to 24 dB larger than those of three previous
‘26 methods at a SNR of5 dB. This result indicates that the proposed

Input signal—to-noise ration [dB] method works well particularly in a low SNR environment.

Fig. 3. Box plot of the normalized signal-to-distortion ratio (NSDR)

of the proposed method for the MIR-1K dataset. The results for 6. CONCLUSION
SNRs of-5,0 and 5 dB are forg, F) = (1.7,2048) (1.0,2048) and
(0.8,1024), respectively. We proposed a new NMF that minimizes thgnorm of the recon-

struction errors between a data matrix and the model. A compu-

As illustrated in Fig. 2 for SNRs 0£5, 0,5 dB, the results show tationally ficient algorithm was derived according to the auxiliary
that the GNSDRs depended stronglypfor all frame lengths. The  function principle, and it has multiplicative update equations, which
highest GNSDRs for all SNRs were73at (o, F) = (1.7,2048) for ~ guarantee the non-negativity & andH. The algorithm ofL,-norm
-5 dB SNR, 195 at o, F) = (1.0,2048) for 0 dB SNR, and.23  NMF can be generalized for that &f,-norm MF for real-valued
at (p,F) = (0.8,1024) for 5 dB SNR. We can see thatat which ~ matrices. We applietl,-norm NMF to singing voice enhancement
GNSDR was the highest for each input SNR decreased as the inpafd showed by experiments that adequately selegtingproves the
SNR became higher. With a high input SNR, the non-zero time£nhancement quality, and the proposed method outperformed three
frequency components of the singing voice spectrogram are larg@revious works under a low SNR situation.
and increasing the sparsity is preferred. On the other hand, with a There are several ways to extebgtnorm NMF to other applica-
low input SNR, the non-zero time-frequency components are smaltions. One promising application is speech enhancement, since the
and decreasing the sparsity is preferred. The obtained results a¥gectrogram of background noise is sometimes approximated as low
consistent with this idea. rank and the speech spectrogram is relatively sparse.
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