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Abstract
This paper deals with the problem of generating the fun-

damental frequency (F0) contour of speech from a text input
for text-to-speech synthesis. We have previously introduced
a statistical model describing the generating process of speech
F0 contours, based on the discrete-time version of the Fujisaki
model. One remarkable feature of this model is that it has al-
lowed us to derive an efficient algorithm based on powerful sta-
tistical methods for estimating the Fujisaki-model parameters
from raw F0 contours. To associate a sequence of the Fujisaki-
model parameters with a text input based on statistical learning,
this paper proposes extending this model to a context-dependent
one. We further propose a parameter training algorithm for the
present model based on a decision tree-based context clustering.
Index Terms: Speech F0 contours, stochastic model, Fujisaki
model, hidden Markov model, EM algorithm

1. Introduction
The fundamental frequency (F0) contour of speech is a fea-
ture that represents the intonation of an utterance. One impor-
tant challenge of the text-to-speech synthesis research involves
developing a reasonable model and method for generating a
natural-sounding F0 contour from a text input.

Thanks to the increasing availability of speech databases,
speech synthesis systems based on statistical models such as
hidden Markov models (HMMs) have attracted particular atten-
tion in recent years. In the HMM-based speech synthesis system
[2], a sequence of spectra, F0s and their delta and acceleration
components is modeled simultaneously within a unified HMM
framework. At the synthesis stage, a sequence of these param-
eters is generated according to the output probabilities of the
trained HMM given an input sentence. The constraints of the
dynamic parameters are considered during parameter genera-
tion in order to guarantee the smoothness of the generated spec-
tral and F0 trajectories. However, conventional HMM based
speech synthesis systems tend to produce over-smoothed F0

contours, which often result in a synthesis that sounds “emo-
tionless” to human listeners.

In speech synthesis technology, one important challenge
involves synthesizing an F0 contour that is not only linguis-
tically appropriate but also physically likely to be generated
via the control mechanism of phonation. The Fujisaki model
[1] is a well-founded mathematical model, that describes the
process by which the whole F0 contour of a speech utterance
is generated. This model is known to approximate actual F0

contours of speech well when the parameters are chosen ap-
propriately. In the Fujisaki model, F0 contour on a logarith-
mic scale is assumed to be the superposition of three compo-
nents: a phrase component, an accent component and a base-
line component. The phrase component consists of the major-
scale pitch variations over the duration of the prosodic units,
and the accent component consists of the smaller-scale pitch
variations in accented syllables. To avoid synthesizing over-
smoothed and physically unlikely F0 contours, one reasonable
approach would be to incorporate the Fujisaki model into the
statistical model for speech synthesis so that we can separately
take the average of each of these components according to the

assigned context labels. Thus, the Fujisaki model can poten-
tially be a good model for F0 contour synthesis. However,
since the Fujisaki model does not take the form of a statisti-
cal (automatically trainable) model, using the Fujisaki model
for synthesizing F0 contours within a statistical framework is
not straightforward. Indeed, estimating (learning) the Fujisaki
model parameters from raw F0 contour observations has been a
difficult task. Several techniques have already been developed
(e.g., [3, 4, 5, 6]), but so far with limited success due to the diffi-
culty in searching for optimal parameters under the constraints
imposed in the Fujisaki model.

We have previously formulated a statistical model of speech
F0 contours by translating the Fujisaki model into a proba-
bilistic model described as a discrete-time stochastic process
[7, 8]. This formulation has allowed us not only to derive an ef-
ficient parameter inference algorithm utilizing powerful statisti-
cal methods but also to obtain an automatically trainable version
of the Fujisaki model. The aim of this paper is to further extend
this model to a context-dependent one so as to be able to learn
and generate the Fujisaki parameters from input sentences.

The rest of this paper is organized as follows. Sec. 2 briefly
reviews the original Fujisaki model and a discrete-time stochas-
tic counterpart to the Fujisaki model, that we have introduced in
[7, 8]. Sec. 3 proposes to extend it to a context-dependent one.
Sec. 4 proposes a parameter training algorithm for the present
model based on decision tree-based context clustering. Sec. 5
shows some results of a speech synthesis experiment conducted
using real speech data excerpted from the ATR speech database.
Sec. 6 concludes this paper.

2. Generative model of speech F0 contours
2.1. Original Fujisaki Model
The Fujisaki model [1] assumes that an F0 contour on a loga-
rithmic scale, y(t), where t is time, is the superposition of three
components: a phrase component yp(t), an accent component
ya(t), and a base component yb:

y(t) =yp(t) + ya(t) + yb. (1)

The phrase component yp(t) consists of the major-scale pitch
variations over the duration of the prosodic units, and the ac-
cent component ya(t) consists of the smaller-scale pitch varia-
tions in accentual phrases. These two components are modeled
as the outputs of second-order critically damped filters, one be-
ing excited with a command function up(t) consisting of Dirac
deltas (phrase commands), and the other with ua(t) consisting
of rectangular pulses (accent commands):

yp(t) =Gp(t) ∗ up(t), (2)

Gp(t) =

{
α2te−αt (t ≥ 0)
0 (t < 0)

, (3)

ya(t) =Ga(t) ∗ ua(t), (4)

Ga(t) =

{
β2te−βt (t ≥ 0)
0 (t < 0)

, (5)
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Figure 1: Previous HMM topology for command function modeling.

where ∗ denotes convolution over time. The baseline compo-
nent yb is a constant value related to the lower bound of the
speaker’s F0, below which no regular vocal fold vibration can
be maintained. α and β are natural angular frequencies of the
two second-order systems, which are known to be almost con-
stant within an utterance as well as across utterances for a par-
ticular speaker. It has been shown that α=3 [rad/s] and β=20
[rad/s] can be used as default values.

It is interesting to note that the phrase and accent com-
mands, which we will henceforth refer to as the Fujisaki-model
parameters, can be interpreted as quantities related to linguistic
information. In the Japanese language, a phrase command and
an accent command typically occur at the beginning of each
breath group and over the range of accent nucleus in each ac-
centual phrase, respectively.

2.2. Probabilistic formulation of F0 contour model
Here, we briefly review our probabilistic pitch contour model
based on the discrete-time version of the Fujisaki model [7, 8].

In the original Fujisaki model, the phrase commands and
accent commands are assumed to consist of Dirac deltas and
rectangular pulses, respectively. In addition, they are not al-
lowed to overlap each other. To incorporate these requirements,
we find it convenient to model the up[k] and ua[k] pair, i.e.,
o[k] = (up[k], ua[k])

T, using a hidden Markov model (HMM).
In [7, 8], we have assumed that {o[k]}Kk=1 is a sequence of
outputs generated from an HMM with the specific topology il-
lustrated in Fig. 1. In state r0, µp[k] and µa[k] are both con-
strained to be zero. In state p1, referred to as the “phrase state,”
µp[k] can take a non-zero value, Ap[k], whereas µa[k] is still
restricted to zero. At the phrase state, no selftransitions are al-
lowed. In state r1, µp[k] and µa[k] become zero again. This
path constraint restricts µp[k] to consisting of isolated deltas.
State r1 leads to states a1, . . . , aN , referred to as the “accent
states.” At each accent state, µa[k] can take a different non-zero
value A(n)

a , whereas µp[k] is forced to be zero. A direct state
transition from an accent state to a different state without pass-
ing through state r1 is not allowed. This path constraint restricts
µa[k] to consisting of rectangular pulses. The output distribu-
tion of each state is assumed to be a Gaussian distribution

o[k] ∼N (o[k]; csk ,Υsk) , (6)

where sk indicates the state variable. Namely, the mean vector
µ[k] = (µp[k], µa[k])

T = csk and covariance matrix Σ[k] =
Υsk are considered to evolve in time as a result of the state
transition s1, . . . , sK . The definition of the above HMM can be
summarized as follows:

Output sequence: {o[k]}Kk=1

State sequence: {sk}Kk=1

Output distribution: P (o[k]|sk) = N (o[k]; csk ,Υsk)
Mean sequence: µ[k] = (µp[k], µa[k])

T = csk
Transition probability: ϕi′,i = logP (sk = i|sk−1 = i′)

Given the state sequence s = {sk}Kk=1, the above HMM
generates the up[k] and ua[k] pair. From (2) and (4), up[k]
and ua[k] are then fed through different critically damped fil-

ters, Gp[k] and Ga[k], to generate the phrase and accent com-
ponents, yp[k] and ya[k]:

yp[k] = up[k] ∗Gp[k], (7)
ya[k] = ua[k] ∗Ga[k], (8)

where ∗ denotes convolution over k. An F0 contour is then
given by

y[k] = yp[k] + ya[k] + yb, (9)

where yb denotes the baseline value.

3. Context Dependent
Generative Model of F0 Contours

3.1. Context dependent phrase and accent command

As discussed in Sec. 2.1, phrase and accent command is closely
associated with linguistic information such as breath group or
accent nucleus. Thus we assume that we can obtain an appro-
priate F0 contour from a text input by allocating a phrase com-
mand to the beggining of each breath group and an accent com-
mand to the range of each accent nucleus. Here, the problem is
how to determine the magnitudes of the phrase and accent com-
mands. In this paper, we treat the magnitude of each command
as a model parameter to be trained using training data. We can
assume that commands depend on the types of the preceding,
current and succeeding breath groups and accentual phrases be-
cause of the fact that F0 contours represent the intonation of
natural speech. Hence, the phrase and accent commands should
be determined according to the types of the preceding, current
and succeeding breath groups and accentual phrases. We hence-
forth call those environments context. In Sec. 3, we propose a
decision-tree based context clustering algorithm, which allows
us to train the decision tree along with the model parameters
using the context labels.

In this paper, the following contextual factors are taken into
account:

• Contextual factors that are relevant to accent commands

– mora count and accent type of {preceeding, cur-
rent, suceeding} accentual phrase

– position of current accentual phrase in current
breath group

– position of current accentual phrase in sentence
– {preceeding, current, suceeding} mora count of

breath group
– position of current breath group in sentence
– mora count in sentence

• Contextual factors that are relevant to phrase commands

– {preceeding, current, suceeding} mora count of
breath group

– accentual phrase count in {preceeding, current,
suceeding} breath group

– position of current breath group in sentence
– mora count in sentence

3.2. Probabilistic F0 contour model including
context dependent phrase and accent command with HMM

To extend the model presented in Subsec. 2.2 to a
contex-dependent one, we consider the HMM described
in Fig. 2. In this HMM, we would like the phrase
and accent states to be grouped into clusters via con-
text clustering. We use M and N to denote the num-
bers of the phrase states and accent states, respectively.
Thus, the present HMM can be summarized as follows:
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Figure 2: Proposed command function generative HMM. Unlike in
the case of previous HMM, command function is output from HMM in
which states are devided by context clustering.

Output sequence: o[k] = (up[k], ua[k])
T (k = 1, . . . ,K)

Set of states: S = {p0, · · · , pM , a0, · · · , aN}
State sequence: s = {sk ∈ S|k = 1, . . . ,K}
Output distribution: P (o[k]|sk = i) = N (ci[k],Υ)

ci=


(
0, 0

)T
(i∈p0, a0)(

A
(m)
p , 0

)T
(i∈pm)(

0, A
(n)
a

)T
(i∈an)

Υ=

[
υ2
p,i 0
0 υ2

a,i

]
Mean sequence: µ[k] = (µp[k], µa[k])

T = csk

At the training stage, the positions of the breath groups and
the accent nucleus are assumed to be specified according to the
hand-annotated context labels. Namely, the state sequence s is
assumed to be given and fixed during the training phase. Now,
let us define

y = {y[k]}Kk=1, s = {sk}Kk=1,

o = {(up[k], ua[k])
T}Kk=1, θ = {{A(m)

p }Mm=1, {A(n)
a }Nn=1},

µp= {µp[k]}
K
k=1, µa= {µa[k]}

K
k=1.

For simplicity, we treat µb, σ2
p, σ2

a , σ2
b, α, β as constants.

Here, θ = {{A(m)
p }Mm=1, {A

(n)
a }Nn=1} are the free parameters

to be trained. In the same way as [7], the likelihood function of
the Fujisaki model parameters θ given y can be derived as

P (y|θ) = |Σ−1|1/2

(2π)K/2
exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
,

µ = A−1µp +B−1µa + µb1, (10)

Σ = A−1Σp

(
AT)−1

+B−1Σa

(
BT)−1

+Σb,

where

Σp = σ2
pI, Σa = σ2

aI, Σb = σ2
bI,

A =


a0 O
a1 a0
a2 a1 a0

. . .
. . .

. . .
O a2 a1 a0

 , B =


b0 O
b1 b0
b2 b1 b0

. . .
. . .

. . .
O b2 b1 b0

,
a2 = (ψ − 1)2, a1 = −2ψ(ψ − 1), a0 = ψ2,

b2 = (φ− 1)2, b1 = −2φ(φ− 1), b0 = φ2,

ψ = 1 +
1

αt0
, φ = 1 +

1

βt0
.

4. Parameter Training
and Generation Processes

4.1. Context clustering
In this section we propose an algorithm for training model pa-
rameters θ = {{A(m)

p }Mm=1, {A
(n)
a }Nn=1} based on decision

tree context clustering [11] and the expectation-maximization
(EM) algorithm [7, 8]. This algorithm allows us to train model
parameters using the training data and to generate phrase and
command functions from an input sentence. In the following,
we will describe the case where the minimum description length
(MDL) criterion is used for selecting nodes to be split. We
also select the probability density function of Fujisaki model
parameters θ and state sequence s given F0 contours y as the
likelihood in the MDL criterion. Here, the number of the leaf
nodes of the decision tree about phrase commands is equal to
the number of the phrase states pm, i.e., M . The number of
the leaf nodes of the decision tree about accent commands is
also equal to the number of the accent states an in the present
HMM, i.e., N . Let us define d = 1, . . . , D as the index of the
sentence in the training data, the F0 contour of d-th sentence as
y(d) = {y(d)[k]}K

(d)

k=1 and θ as the model parameters. Then the
MDL is given by

MDL = −L(θ) + c(N +M) logW + C,

L(θ) =
D∑

d=1

{1

2
log |Σ−1| − K(d)

2
log 2π

− 1

2
(y(d) − µ(d))TΣ−1(y(d) − µ(d))

}
,

µ(d) = A−1µ(d)
p +B−1µ(d)

a + µb1,

Σ = A−1Σp

(
AT)−1

+B−1Σa

(
BT)−1

+Σb,

(11)

where L(θ) denotes the log-likelihood function defined by
(10),c denotes the weighting factor for the adjusting model size,
and C denotes the code length required for choosing the model,
which is assumed to be constant. Now we have to reestimate the
model parameter θ each time a node is split during the context
clustering process. An efficient parameter estimation algorithm
under a fixed model structure has already been proposed in [7].
Note that the proposed method is different from the previous
one in that the state sequence s is fixed and that the model pa-
rameters θ is defined differently. The overview of the proposed
method is shown in Fig. 3

Figure 3: Overview of the proposed context clustering algorithm.
4.2. Parameter training algorithm
Here we present a parameter inference algorithm that searches
for the unknown model parameter θ by iteratively updating θ
so as to maximize a lower bound function of the log-likelihood∑

d logP (y(d)|θ). For simplicity, we will hereafter omit the
superscript d in y(d). By regarding x = (yT

p , yT
a , yT

b)
T as the

complete data this problem can be viewed as an incomplete data
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problem, which can be dealt with using the EM algorithm. The
log-likelihood function of θ given x is written as

logP (x|θ) c
=

1

2
log |Λ−1| − 1

2
(x−m)TΛ−1(x−m),

x =

[
yp
ya
yb

]
, m =

A−1µp

B−1µa
µb1

 , (12)

Λ−1 =

ATΣ−1
p A O O

O BTΣ−1
a B O

O O Σ−1
b

 .
In this case the Q function is thus given by

Q(θ,θ′)
c
=

1

2

[
log |Λ−1| − tr(Λ−1E[xxT|y;θ′])

+ 2mTΛ−1E[x|y;θ′]−mTΛ−1m
]
. (13)

In above equation, a prior probability Pr(θ) is constant since θ
is uniformity distributed and the state sequence s is fixed.

E[x|y; θ] and E[xxT|y;θ] are given explicitly as

E[x|y; θ] = m+ΛHT(HΛHT)−1(y −Hm),

E[xxT|y; θ] = Λ−ΛHT(HΛHT)−1HΛ

+ E[x|y; θ]E[x|y; θ]T,

by using the relationship y = Hx, where H = [I, I, I].
These are the values to be updated at the E step. Let E[x|y; θ]
be partitioned into four K × 1 blocks such that E[x|y; θ] =
(x̄T

p , x̄T
a , x̄T

b)
T.

In the M step, There is no need to update the state se-
quence parameter s since we set restriction that it is always
fixed. Hence the M step update is equivalent to the procedure
that maximize with respect to A(m)

p and A(n)
a and is as follows.

A(m)
p =

1

|Tpm |
∑

k∈Tpm

[Ax̄p]k, Tpm = {k|sk = pm},

A(n)
a =

1

|Tan |
∑

k∈Tan

[Bx̄a]k, Tan = {k|sk = an}.

4.3. Parameter generation process

To obtain F0 contour from input text, we firstly extract the state
sequence by using context and constructed decision trees by
training. Then, according to state sequence s and model pa-
rameters θ, we can obtain the F0 contour by determining y so
as to maximize P (y|s,θ) with respect to y.

5. Preliminary experiment
for proposed method

5.1. Experimental conditions

As a preliminary experiment, we implemented a simplified ver-
sion of the present method to demonstrate the proof of concept
of the present method. The simplified version we have imple-
mented consists of two stages: First, we extract phrase and ac-
cent commands using the method described in [8] from the raw
F0 contours of the training data (the first 450 sentences of HTS
ver 2.1 demo script [9]). Second, the values of the extracted
phrase and accent commands were clustered using a decision
tree based context clustering. The decision tree was constructed
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Figure 4: An example of generated F0 contours of a japanese ut-
terance “ippyo no kakusa wa sarani hirogaru darou”. The top graph
shows the F0 contour generated by the simplified version of the present
method described in 5.1 along with the F0 contour of real speech. The
bottom graph shows the F0 contour generated by HTS [2].

according to the following criterion:

MDL =
1

2

Dj∑
d=1

{
log(2πσ2

j ) +
(xi − µj)

σ2
j

}
+ cJ logW

(14)

where xi indecates the magnitude of each command, J indi-
cates the number of nodes in each tree, j indicates node index,
and Dj indicates the state occupancy of j-th node. We used the
HTS label sequence in [9] in order to extract the beginning of
each breath group and the range of each accentual phrase. In
the method [8], the constant parameters were fixed respectively
at t0 = 8 ms, α = 3.0 rad/s, β = 20.0 rad/s, υ2

n[k] = 1015 for
unvoiced regions and υ2

n[k] = 0.22 for voiced regions. µb was
set at the minimum logF0 value in the voiced regions.

5.2. Experimental results

Fig. 4 shows an example of the F0 contours generated using
the last 53 sentences in the speech database available at [9], the
raw F0 contours of real speech extracted with the straight anal-
ysis [10] and the F0 contours generated by HTS [2]. Since the
conventional method is not ensured to generate an F0 contour
that follows the generating process of F0 contours, it tended to
sometimes generate unnatural-sounding F0 contours. On the
other hand, most of the F0 contours generated by the present
method sounded reasonably natural. This may be due to the fact
that the Fujisaki model is able to express human F0 contours
consistently well. Some examples of the synthesized speech
generated by the present and conventional methods are demon-
strated in our demo site {http://hil.t.u-tokyo.ac.
jp/˜kadowaki/Demos.htm}. We can also confirm from
these results that the over-smoothing of F0 contours rarely oc-
curred with the present approach.

6. Conclusion
This paper proposed a method for generating the F0 contour
of speech from a text input for text-to-speech synthesis. We
previously introduced a statistical model describing the gener-
ating process of speech F0 contours, based on the discrete-time
version of the Fujisaki model. To associate a sequence of the
Fujisaki-model parameters with a text input based on statisti-
cal learning, we extended this model to a context-dependent
one. This idea was motivated by our expectation that averaging
these parameters would not directly cause the over-smoothing
of the F0 contours, unlike the conventional method. We further
proposed a parameter training algorithm for the present model
based on a decision tree-based context clustering. The prelimi-
nary experimental results revealed that the present method was
able to generate natural-sounding F0 contours. Future work in-
cludes implementing the unified training algorithm described in
Sec. 4 and conducting subjective evaluations.
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