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ABSTRACT
This paper proposes a unified approach for jointly solving
underdetermined source separation, audio event detection
and dereverberation of convolutive mixtures. For monaural
source separation, one successful approach involves applying
non-negative matrix factorization (NMF) to the magnitude
spectrogram of a mixture signal, interpreted as a non-negative
matrix. Several attempts have recently been made to extend
this approach to a multichannel case in order to utilize the
spatial correlation of the multichannel inputs as an additional
clue for source separation. The multichannel NMF assumes
that an observed signal is a mixture of a limited number
of source signals each of which has a static power spectral
density scaled by a time-varying amplitude. We have pre-
viously proposed an extension of this approach, in which
the variations over time of the spectral density and the to-
tal power of each source is modeled by a hidden Markov
model (HMM). This has allowed us to solve source activ-
ity detection and source separation simultaneously through
model parameter inference. While this method was based
on an anechoic mixing model, the aim of this paper is to
further extend the above approach to deal with reverberation
by incorporating an echoic mixing model into the genera-
tive model of observed signals. Through an experiment of
underdetermined source separation under reverberant condi-
tions, we confirmed that the proposed method provided a 9.61
dB improvement compared with the conventional method in
terms of the signal-to-interference ratio.
Index Terms: source separation, dereverberation, audio event
detection, non-negative matrix factorization, multichannel
factorial hidden Markov model,

1. INTRODUCTION

Blind source separation (BSS) refers to a technique for sep-
arating out individual source signals from microphone array
inputs when the transfer characteristics between the sources
and microphones are unknown. The best-known commercial
application of BSS techniques is their use in teleconferencing
systems. To solve BSS problems, it is generally necessary to
make some assumptions about the sources, and formulate an
appropriate optimization problem based on criteria designed

according to those assumptions. For example, if the observed
signals outnumber the sources, we can employ independent
component analysis (ICA) [1] by assuming that the sources
are statistically independent of each other. However, in an un-
derdetermined case, the independence assumption is too weak
to allow us to determine a unique solution and so directly ap-
plying ICA will not work well.

For monaural source separation, one successful approach
involves applying non-negative matrix factorization (NMF) to
the magnitude spectrogram of a mixture signal, interpreted as
a non-negative matrix [2][3]. With this approach, the spec-
trogram of a mixture signal is factorized into the product of
a basis matrix consisting of basis spectra and an activation
matrix consisting of time-varying amplitudes associated with
the basis spectra. Several attempts have recently been made
to extend this approach to a multichannel case in order to al-
low for the use of the spatial correlation of multichannel in-
puts as an additional clue for separation, which have opened a
door to a new promising approach for underdetermined BSS
[4][5]. This approach is based on the assumption that an ob-
served signal is a mixture of a limited number of source sig-
nals each of which has a static power spectral density (i.e., the
basis spectrum) scaled by a time-varying amplitude. How-
ever, many source signals in real world are non-stationary in
nature and the variations of the spectral densities are much
richer in time. Another important fact is that many sources in-
cluding speech tend to stay inactive for some while until they
switch to an active mode. This implies that the total power
of a source may depend on its underlying state. To reason-
ably characterize such a non-stationary nature of source sig-
nals, we previously extended the multichannel NMF model
by modeling the transition of the set consisting of the spectral
densities and the total power of each source using a hidden
Markov model (HMM). We call this model the “multichannel
factorial hidden Markov model (MFHMM)” [6]. With this
model, we are able to perform source separation and source
activity detection simultaneously. However, in the models
mentioned above, the length of the impulse response from a
source to microphones is assumed to be sufficiently shorter
than the frame length of the STFT so that the observed signal
can be approximately modeled by an instantaneous mixture in
the time-frequency domain. To deal with reverberation, this
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paper aims to further extend the above approach by incor-
porating an echoic mixing model into MFHMM. Parameter
inference of the present model allows us to simultaneously
solve source separation, source activity detection and dere-
verberation based on a unified maximum likelihood criterion.

The remainder of this paper is organized as follows: Sec.
2 formulates a generative model of a multichannel observed
signal under a reverberant condition, Sec. 3 presents the gen-
erative model of a source signal based on an HMM, Sec.
4 dervies a parameter estimation algorithm for the present
model and Sec. 5 presents some results of a source separa-
tion experiment.

2. ECHOIC MIXING MODEL

First we consider a situation where I source signals are
recorded by M microphones. Here, let ym(t) ∈ R be the
observed signal at the m-th microphone, and si(t) ∈ R be the
signal of the i-th source. The observed signal can be written
in the time domain:

y(t) =
I∑

i=1

∫ ∞

−∞
ai(τ)si(t − τ)dτ, (1)

where y(t) = (y1(t), . . . , yM (t))T ∈ R
M and ai(t) =

(ai,1(t), . . . , ai,M (t))T ∈ R
M . ai,m(t) denotes the impulse

response between source i and microphone m. If we assume
that the length of the impulse response from a source to mi-
crophones is sufficiently shorter than the frame length of the
STFT, the observed signal can be approximated fairly well by
an instantaneous mixture in the time-frequency domain:

y(ωk, tl) =
I∑

i=1

ai(ωk)si(ωk, tl), (2)

where y(ωk, tl) = (y1(ωk, tl), . . . , yM (ωk, tl))T ∈ C
M

and ai(ωk) = (ai,1(ωk), . . . , ai,M (ωk))T ∈ C
M . Let

ym(ωk, tl) ∈ C be the short-time Fourier transform (STFT)
component observed at the m-th microphone, and si(ωk, tl) ∈
C be the STFT component of the i-th source. 1 ≤ k ≤ K and
1 ≤ l ≤ L are the frequency and time indices, respectively.
ai(ωk) denotes the frequency array response for source i at
frequency ωk. However, in a reverberant condition, the length
of the impulse responses are relatively long and so an instan-
taneous mixture approximation is not always true. Therefore
we approximately express the observed signals as a form of
a convolution of the frequency array response and the source
signal in the time-frequency domain:

y(ωk, tl) ≈
I∑

i=1

N∑
n=0

ai(ωk, tn)si(ωk, tl − tn). (3)

0 ≤ n ≤ N is the time index of the frequency array response
in the time-frequency domain. Note that ai(ωk, t1 : tN ) de-
note the frequency array responses which correspond to the
impulse responses out of the frames of the STFT. This ap-
proximation is useful for dereverberation [7] and the validity
of the approximation is experimentally shown. For conve-
nience of notation, we hereafter use subscripts k, l and n to
indicate ωk, tl and tn respectively.

3. MULTICHANNEL FACTORIAL HMM

3.1. Generative process of observed signals
Here we describe the generative process of an observed signal
based on Eq. (3). If we assume that each source signal follows
a piecewise stationary Gaussian process, then si,k,l follows
a complex normal distribution with mean 0 and covariance
σ2

i,k,l,

si,k,l|σi,k,l ∼ NC(si,k,l; 0, σ2
i,k,l), (4)

where σ2
i,k,l denotes the power spectral density of i-th source

at frequency k and time l and NC(x; μ, Σ) ∝ exp(−(x −
μ)HΣ−1(x − μ)). From Eq. (3) and Eq. (4), yk,l is also
normally distributed such that

yk,l|a1:I,k,0:N , σi,k,l−N :l

∼ NC(yk,l; 0,
∑
i,n

Ci,k,nσ2
i,k,l−n), (5)

conditioned on a1:I,k,0:N and σi,k,l−N :l where Ci,k,n =
ai,k,naH

i,k,n. Ci,k,n represents n-th spatial correlation matrix

of the i-th source at frequency k.

3.2. Generative model for multichannel NMF [4, 5]

In the regular NMF model (see [8]), the power spectra of a
source signal is assumed to be static up to a scale factor. We
can incorporate this assumption into the above model by set-
ting

σ2
i,k,l = wi,khi,l, (6)

where σ2
i,k,l is assumed to be factorized into the product of the

static power spectrum wi,k and the time-varying amplitude
hi,l. The generative model of si,k,l is thus rewritten as

si,k,l|wi,k, hi,l ∼ NC(si,k,l; 0, wi,khi,l), (7)

conditioned on wi,k and hi,l.

3.3. Generative modeling of source signals using HMMs

As described above, the multichannel NMF model roughly
assumes that the power spectra of each sound source is static
up to a scale factor. However, many sound sources exhibit dif-
ferent spectra according to underlying “states” of the sources.
For example, the spectra of the sound of a piano note would
be different in “attack,” “decay,” “sustain” and “release” seg-
ments. Another important fact is that the total power of a
source also depends on its underlying state. To reasonably
characterize such a non-stationary nature of source signals,
here we model the sequence of the power spectra and the to-
tal powers of each source using an HMM.

Now we introduce a latent variable zi,l ∈ {1, . . . , D} to
denote a state of the i-th source at time l. The state sequence
zi,1, . . . , zi,L is assumed to follow a Markov chain:

zi,l|zi,l−1 ∼ Categorical(zi,l; ρzi,l−1
), (8)



where Categorical(x; y) = yx, ρd = (ρd,1, . . . , ρd,D)
denotes the transition probability of state d to each state
1, . . . , D, and ρ = (ρd,d′)D×D denotes the transition matrix.
Here, we assume that hi,l follows a gamma distribution with
hyperparameters determined according to zi,l,

hi,l|zi,l ∼ Gamma(hi,l;αzi,l
βzi,l

), (9)

where α1:D and β1:D are the shape and scale parameters of

a gamma distribution, and Gamma(x; α, β) = xα−1e−x/β

Γ(α)βα .

As we want hi,l to take a small value when zi,l is the “in-
active” (i.e., silent) state, we set the hyperparameters of the
gamma distribution of that state so that it becomes a sparsity-
inducing distribution. As regards the gamma distributions of
the remaining states, we consider setting the hyperparameters
so that they become uniform distributions. We expect that this
setting allows us to solve source separation and source activ-
ity detection in a cooperative manner. Let us use wi,k,d to
denote the power spectrum of the i-th source at state d. The
power spectrum of the i-th source at time l is also assumed to
be determined according to zi,l. Thus, the generative model
of si,k,l is eventually written as

si,k,l|wi,k,1:D, hi,l, zi,l

∼ NC(si,k,l; 0, wi,k,zi,l
hi,l). (10)

Since the generative model of yk,l contains multiple HMMs
associated with the underlying sources, the overall model can
be viewed as a Factorial HMM. Our overall generative model
is given by Eqs. (8), Eqs. (9) and

yk,l|a1:I,k,0:N , w1:I,k,1:D, h1:I,l−N :l, z1:I,l−N :l

∼ NC(yk,l; 0,
∑
i,n

Ci,k,nwi,k,zi,l−n
hi,l−n), (11)

conditioned on a1:I,k,0:N , w1:I,k,1:D, h1:I,l−N :l and z1:I,l−N :l.

3.4. Related work

The present model is equivalent to the model proposed in [6]
when the number N is set at 0, which leads to an anechoic
mixing model.

4. ALGORITHM FOR PARAMETER ESTIMATION

4.1. Objective function
In this section, we describe a parameter estimation algo-
rithm for our generative model based on an auxiliary function
method. The random variables of interest in our model are
W = w1:I,1:K,1:D, H = h1:I,1:L, C = C1:I,1:K,0:N and
Z = z1:I,1:L . We denote the entire set of the above parame-
ters as Θ. In the following, ρ is constants that is determined
experimentally. Our goal is to compute the posterior

p(Θ|Y ) =
p(Y ,Θ)
p(Y )

, (12)

where Y = y1:K,1:L is a set consisting of the time-frequency
components of observed multichannel signals. By using the

conditional distributions defined in Sec. 3, we can write the
joint distribution p(Y ,Θ) as

p(Y , Θ) ∝p(Y |Θ)p(H|Z)p(Z). (13)

The objective function is defined as L(Θ) = log p(Θ|Y ).
Our goal is to obtain Θ̂ such that

Θ̂ = argmax
Θ

log p(Θ|Y ). (14)

By using Eqs. (12), (13) and (14), the current optimization
problem can be rewritten as

Θ̂ = argmax
Θ

(
log p(Y |Θ)

+ log p(H|Z) + log p(Z)
)
. (15)

According to the generative model defined in Sec. 3, log p(Y |Θ)
is written as

log p(Y |Θ)

= −1
2

∑
k,l

(M log 2π + log |X̂k,l| + yk,l
HX̂

−1

k,l yk,l), (16)

where X̂k,l =
∑

i,n Ci,k,nwi,k,zi,l−n
hi,l−n.

4.2. Optimization algorithm based on an auxiliary func-
tion method

The optimization problem of maximizing L(Θ) with respect
to Θ is difficult to solve analytically. However, we can in-
voke an auxiliary function approach to derive an iterative al-
gorithm that searches for the estimate of Θ, as with [5]. To
apply an auxiliary function approach to the current optimiza-
tion problem, the first step is to construct an auxiliary function
L+(Θ, Λ) satisfying L(Θ) = maxΛ L+(Θ, Λ). We refer to
Λ as an auxiliary variable. It can then be shown that L(Θ) is
non-decreasing under the updates Θ ← argmaxΘ L+(Θ, Λ)
and Λ ← argmaxΛ L+(Θ, Λ). The proof of this shall be
omitted owing to space limitations. Thus, L+(Θ,Λ) should
be designed as a function that can be maximized analytically
with respect to Θ and Λ. Such a function can be constructed
as follows.

L(Θ)

≥L+(Θ,Λ)

= − 1
2

∑
k,l

{∑
i,n

( tr(yk,lyk,l
HRi,k,l,nC−1

i,k,nRi,k,l,n)
wi,k,zi,l−n

hi,l−n

+ tr(U−1
k,l Ci,k,n)wi,k,zi,l−n

hi,l−n

)
+ log |Uk,l| − M

}

+
∑
i,l

{
(αzi,l

− 1) log hi,l − hi,l/βzi,l
− αzi,l

log βzi,l

}

+ log p(Z), (17)

where Ri,k,l,n and Uk,l are auxiliary variables that satisfy
Hermitian positive definiteness and

∑
i,n Ri,k,l,n = I . We



denote the set of the auxiliary variables as Λ. tr(·) is the trace
of a matrix. The equality L(Θ) = L+(Θ, Λ) is satisfied when

Ri,k,l,n = Ci,k,nwi,k,zi,l−n
hi,l−nX̂

−1

k,l , (18)

Uk,l = X̂k,l. (19)

Therefore, we can monotonically increase L by repeating
the following two steps.

1. Maximizing L+ with respect to R and U .

2. Maximizing L+ with respect to W ,H, C and Z.

Step 1 consists in updating R and U using Eqs. (18) and
(19). In step 2, we can obtain update rules of W , H, C by
setting the partial derivative of L+ with respect to each of the
parameters at zero. The partial derivatives of L+ with respect
to W and H are given by

∂L+

∂wi,k,zi,l

=
1
2

∑
l,n

( tr(yk,l+nyk,l+n
HRi,k,l+n,nC−1

i,k,nRi,k,l+n,n)
w2

i,k,zi,l
hi,l

− tr(U−1
k,l+nCi,k,n)hi,l

)
, (20)

∂L+

∂hi,l

=
1
2

∑
k,n

( tr(yk,l+nyk,l+n
HRi,k,l+n,nC−1

i,k,nRi,k,l+n,n)
wi,k,zi,l

h2
i,l

− tr(U−1
k,l+nCi,k,n)wi,k,zi,l

)

+ (αzi,l
− 1)/hi,l − 1/βzi,l

, (21)

respectively. By setting them at zero, we obtain the following
update rules:

wi,k,zi,l

←

√√√√√
∑

l,n

tr(yk,l+nyk,l+n
HRi,k,l+n,nC−1

i,k,nRi,k,l+n,n)

hi,l∑
l,n tr(U−1

k,l+nCi,k,n)hi,l

, (22)

hi,l

← (αzi,l
− 1) +

√
(αzi,l

− 1)2 + μi,lνi,l

νi,l
, (23)

where

μi,l

=
∑
k,n

tr(yk,l+nyk,l+n
HRi,k,l+n,nC−1

i,k,nRi,k,l+n,n)
wi,k,zi,l

,

(24)

νi,l

Fig. 1. Spectrogram of a mixture signal.

=
∑
k,n

tr(U−1
k,l+nCi,k,n)wi,k,zi,l

+ 2/βzi,l
. (25)

The partial derivatives of L+ with respect to C is given by

∂L+

∂Ci,k,n
=

∑
l

(
C−1

i,k,nRi,k,l,nyk,lyk,l
HRi,k,l,nC−1

i,k,n

wi,k,zi,l−n
hi,l−n

− U−1
k,l wi,k,zi,l−n

hi,l−n

)
. (26)

By setting this at zero, we obtain an algebraic Riccati equa-
tion:

Ci,k,nAi,k,nCi,k,n = Bi,k,n, (27)

where

Ai,k,n =
∑

l

wi,k,zi,l−n
hi,l−nX̂

−1

k,l ,

Bi,k,n = Ci,k,n(
∑

l

wi,k,zi,l−n
hi,l−n

X̂
−1

k,l yk,lyk,l
HX̂

−1

k,l )Ci,k,n. (28)

We can solve this equation by using a method in [5]. We
perform an eigenvalue decomposition of a 2M × 2M matrix

[
0 −Ai,k,n

−Bi,k,n 0

]
, (29)

and let e1,i,k,n . . . eM,i,k,n be eigenvectors with negative
eigenvalues. It is guaranteed that there are exactly M negative
eigenvalues. Then, let us decompose the 2M -dimensional
eigenvectors as

em,i,k,n =
[
fm,i,k,n

gm,i,k,n

]
, (30)

for m = 1 . . .M where fm,i,k,n and gm,i,k,n are M -
dimensional vectors. We obtain the update rule for Ci,k,n

as

Ci,k,n ← Gi,k,nF−1
i,k,n, (31)



Fig. 2. (a)A spectrogram of the source signal of the stapler
recorded in an anechoic condition, (b)that of the separated
signal of the stapler obtained by the conventional method,
(c)that of the separated and dereverbed signal of the stapler
obtained by the proposed method, and (d)the acoustic event
detection result obtained by the proposed method. Black in-
dicates the state is assigned at the time.

where F i,k,n = [f1,i,k,n, . . . , fM,i,k,n] and Gi,k,n =
[g1,i,k,n, . . . , gM,i,k,n].

L+ is equal up to constant terms to the sum of the log
posteriors of HMMs, when viewed as a function of Z. Thus,
we can invoke the Viterbi algorithm to search for the optimal
path zi,1, . . . , zi,L for each i individually. Note that updat-
ing W , H , C and Z corresponds to solving the problems of
source separation, source activity detection and dereverbera-
tion based on a unified objective function.

5. EXPERIMENTAL EVALUATION

We evaluated the performance of the present method in terms
of the abilities of source separation, source activity detec-

Table 1. The SIRs of the three sources obtained by the con-
ventional and proposed methods.

SIR [dB] bell phone stapler

Proposed 43.35 32.05 7.19
Conventional 32.37 30.15 -8.77

tion and dereverberation in a supervised case. We used a
mixed stereo signal as the experimental data, each of which
we obtained by mixing the non-speech signals (sounds of a
cell phone, a bell and a stapler) from the RWCP database[9]
and was convolved with the measured room impulse response
from the RWCP database [9] (in which the distance between
the microphones was 2.83 cm and the reverberation time was
600 ms). Thus, the three signals were artificially located 60◦,
90◦ and 130◦ from the microphones respectively. Fig. 1
shows a spectrogram of the observed signal in the reverberant
condition. The sampling rate was 32 kHz. To compute the
STFT components of the observed signal, the STFT frame
length was set at 16 ms and a Hamming window was used
with an overlap length of 8 ms. We set the number of states
of HMMs D as 2. We expected that d = 1 was an inactive
state and d = 2 was an active state, by setting α1 and β1

as 1 and 10−2 respectively, and α2 and β2 as 1 and 1020 re-
spectively. The diagonal elements of Ci,k,0 were initially all

set to 1/
√

M , and the off-diagonal elements were initially set
to zero. For n = 1, . . . , N , the diagonal elements of Ci,k,n

were set to 10−3/
√

M , and the off-diagonal elements were
also set to zero initially. We first learned W , H and ρ from
the three clean source signal recorded in the anechoic condi-
tion with the proposed method starting from random initial
matrices W and H (therefore this experiment was a super-
vised source separation). The parameter estimation algorithm
was run for 150 iterations. In order to avoid an undesirable
local optima, we iterated the proposed algorithm 100 times
with setting N as 0, then gradually increased N up to 20 ac-
cording to the iteration. We chose the method proposed in
[6] as a comparison. This method equals to be our proposed
method when we set N = 0. The separated signal ŷi,k,l was
obtained by Wiener filtering

ŷi,k,l = wi,k,zi,l
hi,lCi,k,0X̂

−1

k,l yk,l. (32)

As evaluation measures, we used the signal-to-interference
ratio (SIR) [10]. The SIR is expressed in decibels (dB), and
a higher SIR indicates superior quality. The input SIR of the
sounds of the bell, the cell phone and the stapler were -16.61,
16.58 and -39.17 [dB], respectively.

Table 1 shows the SIRs obtained by the conventional and
proposed methods. The average of the SIRs obtained with
the proposed method was 9.61 [dB] more than that obtained
with the conventional approach. These results show the ef-
fectiveness of the proposed method for source separation in
a reverberant condition. Fig. 2 shows (a)a spectrogram of
the source signal of the stapler recorded in an anechoic con-
dition, (b)that of the separated signal of the stapler obtained
by the conventional method, (c)that of the separated and dere-
verbed signal of the stapler obtained by the proposed method,



and (d)the acoustic event detection result obtained by the pro-
posed method respectively. Black indicates the state is as-
signed at the time. We can see that the reverberant compo-
nents were relatively removed by the proposed method and
the acoustic event was roughly detected.

6. CONCLUSION

This paper proposed a unified approach for jointly solving un-
derdetermined source separation, audio event detection and
dereverberation of convolutive mixtures based on MFHMM
with an echoic mixing model. Through an experiment of su-
pervised source separation under reverberant conditions, we
confirmed that the proposed method provided a 9.61 dB im-
provement compared with the conventional method in terms
of the signal-to-interference ratio.
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