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Signal  Estimation  from  Modified  Short-Time 
Fourier  Transform 

DANIEL W. GRIFFIN A N D  JAE S. LIM, SENIOR MEMBER, IEEE 

Abstract-In this paper, we present an algorithm to estimate a signal 
from its  modified  short-time Fourier transform (STFT). This algorithm 
is computationally simple and is obtained by minimizing the mean 
squared  error between the STFT of the  estimated signal  and the  modi- 
fied STFT. Using this algorithm, we also develop an iterative algorithm 
to estimate a signal from its  modified  STFT magnitude. The iterative 
algorithm is shown to decrease, in each iteration, the mean squared 
error between  the  STFT magnitude of the estimated signal and the 
modified STFT magnitude. The  major computation involved in the 
iterative algorithm is the discrete Fourier transform (DFT)  computa- 
tion, and the algorithm appears to be real-time implementable with 
current  hardware technology. The algorithm developed in this paper 
has been applied to the time-scale modification  of  speech. The result- 
ing system generates very high-quality speech, and  appears to be better 
in performancc than any existing  method. 

I. INTRODUCTION 

I N a number of practical  applications [1]-[5], it is desirable 
to  modify  the  short-time  Fourier  transform  (STFT)  or  the 

short-time  Fourier  transform  magnitude  (STFTM)  and  then es- 
timate  the  processed signal from  the  modified  STFT  (MSTFT) 
or the  modified  STFTM (MSTFTM). For  example, in speech 
enhancement by spectral  subtraction [ 2 ] ,  [3] ~ the  STFT is 
modified by combining  the  STFT  phase  of  the  degraded  speech 
with a MSTFTM,  and  then a signal is reconstructed  from  the 
MSTFT. As another  example,  in  the  time-scale  modification 
of  speech,  one  approach is to  modify  the  STFTM  and  then to 
reconstruct a signal from  the  MSTFTM.  In  most  applications, 
including  the  two  cited  above,  the  MSTFT  or  MSTFTM is not 
valid in  the  sense  that  no signal has the  MSTFT  or  MSTFTM, 
and  therefore  it is important to develop  algorithms to  estimate 
a signal whose  STFT  or  STFTM is close in some sense to  the 
MSTFT  or MSTFTM.  Previous  approaches to this  problem 
have been  mostly  heuristic [6] -[8], and have been  limited  to 
estimating  a signal from  the  MSTFT [ 6 ] ,  171. In  this  paper, 
we develop  new  algorithms  based  on  theoretical  grounds to 
estimate  a signal from  the  MSTFT  or  the  MSTFTM. In addi- 
tion,  the  new  algorithm is applied to  the  problem  of  time-scale 
modification  of  speech.  The  resulting  system is considerably 
simpler  conceptually  and  appears t o  have better  performance 
than  the  system  described by Portnoff [ I ]  . 

The  paper is organized  as  follows.  In  Section 11, we develop 
an  algorithm to  estimate a signal from  the  MSTFT by mini- 
mizing the  mean  squared  error  between  the  STFT of the  esti- 
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mated signal and  the  MSTFT.  The  resulting  algorithm is quite 
simple  computationally. In Section 111, the algorithm  in  Sec- 
tion I1 is used to  develop  an  iterative  algorithm  that  estimates 
a signal from  the MSTFTM. The iterative  algorithm is shown 
to  decrease, in each  iteration,  the  mean  squared  error  between 
the STFTM of the estimated signal and  the  MSTFTM. In Sec- 
tion IV, we present an example of the successful  application 
of  our  theoretical  results.  Specifically, we develop a time- 
scale speech  modification  system  by  modifying  the  STFTM 
first and then  estimating a signal from  the  MSTFTM  using  the 
algorithm  developed in Section 111. The resulting  system  has 
been  demonstrated to gene]-ate  very  high  quality,  time-scale 
modified  speech. 

11. SIGNAL  ESTlblATION FROM MODIFIED  SHORT-TIME 
FOUI<I~. :K TRANSFOKbl 

Let x(n)  and X,(nzS, w )  denote  a real sequence  and  its 
STFT.  The variable S is a positive  integer,  which  represents 
the  sampling  period  of X,(n, w )  in  the  variable n. Let  the 
analysis  window used in the  STFT  be  denoted  by ~ ( n ) ,  and 
with  little loss of  generality, w(n)  is assumed to  be  real, I ,  
points  long,  and  nonzero  for 0 < n < I, - 1. From  the  defini- 
tion  of  the  STFT 

x,(~?zs, o) = F~ [x,(urz~, I ) ]  = x,(rn~, I )  d m '  (1) 
m 

[ =  -- 
where 

x,(rnS, I )  = w(mS - I )  x(/) ( 2 )  

and Fl [xw(mS,  I ) ]  represents  the  Fourier  transform  ofx,(mS, 
I )  with  respect to the variable 1. 

Let Y,(mS, w )  denote  the given MSTFT  and  let y,(mS, I )  
be given by 

Yw(mS,  I )  = - Y,(mS, w )  c j w l  dw. ( 3 )  sn 271 w = - r  

An arbitrary Y , ( m S .  o), in general, is not  a valid STFT in  the 
sense that  there is no sequence  whose  STFT  isgiven by Y,(mS, 
0). In this  section, we develop a new  algorithm to estimate a 
sequence X(/?) whose  STFT X , ( m S ,  w )  is closest  to Y,(rn.S, 
o) in the  squared  error  sense. 

Consider  the  following  distance  measure  between x(n)  and 
a given MSTFT Y,(mS, 0): 

ea 

D[X(fZ),  Y,(f72S, a)] = -- I In /X,(flZS, w )  
m = -m 2n w =-n 

- Y,(mS, o ) l 2  dw. (4) 
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The  distance  measure  in (4) is the  squared  error  between the  window  in (6) can  be  normalized so that = - _  wz (mS - 
X,(mS, o) and Y,(mS, w )  integrated  over all w and  summed n) is unity  for all n.  Any  nonzero  window  can  be  normalized 
over  all m. I t  has  been  written  as  a  function of x(n)  and Y ,  in  this  manner  for  maximum  window  overlap ( S  = 1). For 
(mS, a) to  emphasize  that X,(mS, o) is  a valid STFT  while partial  window  overlap,  however,  the  window  ismore  restricted. 
Y,(mS, o) is not necessarily  a  valid STFT. By Parseval’s Several  windows  which have this  property  for  partial  window 
theorem, (4) can  be  written  as overlap  are  discussed  below. 

When the  window  shift ( S )  divides the  window  length (I,) 
D[x(n) ,  Y,(mS, all = 2 2 [x,(mS, 0 evenly, the rectangular  window  defined  by 

m =-- 

- y,(mS, 0 1 2  f (’1 w,(n) = 
O < n < L  

Since (5) is in the  quadratic  form  of ~ ( n ) ,  minimization  of 
D[x(n) ,  Y,(mS, w)]  can  be  accomplished  by  setting  the. 

otherwise 

gradient  with  respect t o  ~ ( n )  to  zero  and solving for x(n)  has  the  property 
which  leads  to  the  following  result: 2 w,”(mS-n)= - =  1. 

(L Ia-1 S 
(1 0)  5 w(mS - n)y,(mS, n )  ??I = -m m=O I, 

x(n)  = 
m =-m ( 6 )  We can  further  show  with  some  algebra  that if the  window 

length ( L )  is a  multiple of four  times  the  window  shift ( S )  then 5 w2(mS- n )  
m =-m the  sinusoidal  window  defined  by 

This  solution is similar  in form  to  the  standard  overlap-add 
procedure [6], [ 7 ] ,  or  the  weighted  overlap-add  procedure 
[ 9 ] ,  [ I O ] .  The  overlap-add  procedure  can  be  expressed  as 

The  weighted  overlap-add  procedure  can  be  expressed  as 

x ( n )  = 2 f ( m S  - n)v,(mS, n )  
m = -.X 

for  some  “synthesis”  filter f ( n ) .  The  major  difference  be- 
tween (6) and (7) is that (6) specifies that yw(mS,  n )  should 
be  windowed  with  the  analysis  window  before  being  over- 
lap  added  and w(mS - n)  should  be  squared  before  summation 
over  the  variable m for  normalization.  The  difference  between 
(6) and (8) is that (6) explicitly  specifies  what f ( n )  is and  has 
the  normalization  constant.  In  addition,  the  major  difference 
between (6) ,  and (7) and (8 ) ,  is that (6) was  theoretically  de- 
rived  explicitly  for  the  purpose  of  estimating  a signal from  the 
MSTFT based on  the least squares  error  criterion  of (4). Equa- 
tions (7) and (8), however,  were  derived to  reconstruct  a signal 
from  its  exact  STFT  or to estimate  a signal from  the  MSTFT 
for a very  restricted  class  of  modifications,  and  were  sometimes 
used as ad  hoc  methods  to  estimate  a signal from  the  MSTFT. 
From  the  computational  point  of view, the  differences  cited 
above  are  minor in terms  of  both  the  number  of  arithmetic op- 
erations  and  the  amount  of  on-line-storage  required.  For  ex- 
ample, (6) can  be  implemented  with  little  on-line  storage  and 
delay, in the  same  manner [ I O ]  as  the  standard-overlap  proce- 
dure  of (7) or  the  weighted  overlap-add  procedure of (8). 
Since  the  algorithm  represented  by (6) minimizes  the  distance 
measure  of (4), i t  will be  referred to as LSEE-MSTFT,  meaning 
least squares  error  estimation  from  the  MSTFT. 

In the  standard  overlap-add  method,  the  window is  usually 
normalized so that X,,=-, w ( m S  - n )  is unity  for all n in 
order to reduce  computation. As in the overlap-add  method, 

m 

has  the  property given by (10). In  addition, we require  that 
this  class of  sinusoidal  windows  be  symmetric so that w(n) = 
w(L - 1 - n).  This  requirement  can  be  satisfied  by  choosing 
qb = v/L. By choosing  values  for a and b ,  windows  similar  to 
the  Hamming  window  and  the  Hanning  window  can  be  ob- 
tained.  Thus,  the  modified  Hamming  window  used  for  time- 
scale  modification  of  speech  in  Section IV will be  defined as 
(1 1) for a = 0.54, b = - 0.46, and qb = v/L. The  major  differ- 
ence  between  this  definition  and  the  standard  definition  of 
the  Hamming  window is that  the  period  of  the sine wave  is I 
in the  modified  Hamming  window  as  opposed  to I - 1 for  the 
standard  Hamming  window.  Similarly,  a  modified  Hanning 
window  can  be  defined  as (1 1) for a = 0.5, b = -0.5, and qb = 
n/L. Use of  these  modified  windows  eliminates  the  need  for 
normalizing  by =-m w 2  (mS - n )  in ( 6 ) :  which  reduces 
computation  and/or  storage  requirements  for  partial  window 
overlap. 

Estimating x(n) based on (6) minimizes  the  squared  error 
between X,(mS, o) and Y,(rnS, a), and  therefore  can  be 
used  directly to  estimate  a  sequence  from  a  MSTFT. As will 
be  discussed in the  next  section, (6) can  also  be used to de- 
velop  an  iterative  algorithm  that  estimates  a signal from  the 
MSTFTM. 

111. SIGNAL ESTIMATION m O M  M O D I F I I ~  
STFT  MAGNITUDE 

In  this  section, we consider  the  problem  of  estimating x(n)  
from  the  modified  STFT  magnitude ~ Y,(nzS, o ) l .  The algo- 
rithm we develop is an  iterative  procedure  based  on  the LSEE- 
MSTFT  algorithm  which is similar in style  to several other 
iterative  algorithms [ 1 I 1 ,  [ 121. In  this  algorithm,  the  squared 
error  between IX,(mS, o)/ and I Y,(mS, o) 1 is decreased in 
each  iteration.  Let x’(n) denote  the  estimated x(n)  after  the 
ith  iteration.  The i f  1st estimate x‘+’(n) is obtained  by  tak- 
ing the  STFT  of x‘(n) ,  replacing the  magnitude  of Xk(nzS, w )  
with  the given magnitude 1 Y,(nzS, w)l and  then  finding  the 
signal with STFT  closest  to  this  modified  STFT  using (6). The 
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Given 1 Y,(mS, O) 1 
Initial Estimate of x(n) 

J > x ' ( n )  

1,'ig. 1. LSI1E-MSTFTM algorithm. 

iterative  algorithm,  which is illustrated  in  Fig. 1. results in the 
following  update  equation: 

LV2 ( m s  - n )  
m = -m 

where 

In (13): if IX:v(mS, w)1 = 0, then Xk(mS,  w )  is set to  1 Y, 
(nzS, a)/. It  can be shown  (see  Appendix)  that  the  algorithm 
in Fig. 1 decreases in each  iteration the following  distance 
measure: 

* .  

l T  
4RI[x(n), /Yw(mS,C3)II = 2 - J [ :Xw(mS,w) I  

m 2n w =-71 

1 Y,(nzS, w ) l ] %  do. (14) 

It  can  also  be  shown (see Appendix)  that  the  algorithm  always 
converges to a set consisting  of  the  critical  points  of  the  dis- 
tance  measure D,v as a  function  of x(M) .  This  algorithn~ will 
be referred to  as  LSEE-MSTFTM. 

It is possible to  develop  ad  hoc  methods  to  estimate X(.)  

from  the  MSTFTM by modifying  the  iterative  algorithm in 
Fig. 1. For  example,  suppose we use in one  step  of  the  itera- 
tive procedure  the  standard  overlap-add  method  rather  than 
the  LSEE-MSTFT  method in obtaining  the  next  estimate 
x i+ ' ( / ? )  from  the  MSTFT XL,(n7S. w). This  results i n  the 
following  update  equation: 

where ?L(rnS? w )  is given by (13). This  algorithm will be 
called  OA(overlap-add)-MSTFTM to distinguish it from  the 
LSEE-MSTFTM  algorithm.  Although OA-MSTFTM requires 
fewer  multiplications  per  iteration  since  one less windowing 
step is required, i t  is not  guaranteed  to  converge to the  criti- 
cal paints  of DM. As will  be shown  in  Section IV, however, 
OA-MSTFTM  does  appear to reduce DM enough t o  produce a 
reasonable signal estimate  for  the  purposes of time-scale  modi- 
fication  of  speech. 

One  method of decomposing  a  speech  signaly(n) is to repre- 
sent it as the  convolution  of  an  excitation  function  with  the 
vocal tract  impulse  response.  Consequently,  the  STFT magni- 
tude  of  this  speech  signal 1 Y,(mS, w )  1 can be written  as  the 
product of a  component  due  to  the  excitation  function IP, 
(nzS, w)l and  a  component  due  to  the  vocal  tract  impulse 
response IH,(mS, o)/. This  decomposition is valid if the 
analysis  window is long  enough  to  include  several  vocal  tract 
impulse  responses  and  short  enough so that  the  speech signal 
is approximately  stationary  over  the  window  length.  Under 
these  conditions,  the  function /P,(mS, w)l will correspond 
to the  rapidly  varying  portion  of IY,(mS, w ) /  with w? taking 
on  an  harmonic  structure  for  voiced  speech  or  noise  for  un- 
voiced  speech.  The  function IH,(mS, w)l will correspond to 
the  slowly  varying  portion  of I Y,(mS, w)I with w ,  and will 
include  the  formant  information  of  the  speech signal. Since 
the  speech signal is assumed to be  approximately  stationary 
over the  window  length, IP,(mS, w)l and IH,(mS, w)l will 
change  slowly  with the  time  index mS as the  pitch  pcriod  and 
vocal  tract  impulse  response  change. 

The goal  of  time-scale  modification is to modify  the  rate  at 
which /P,(mS, w)l and /H,(mS, w ) '  vary with  time,  and 
hence  the  rate a t  which I Y,(mS, w)I varies with  time,  without 
affecting  the  spectral  characteristics.  This  can  be  accomplished 
by estimating  a signal with  STFT  magnitude  close to a tirne- 
scale modified  version  of I Y,(mS, w)i. A  time-scale  modifica- 
tion  of SI :S2 can  be  performed by calculating I Y,(mS,, w)I 
st  the  window  shift SI and XL>(mS2, o) at the  window  shift 
5'2 in the LSEE-MSTFTM or OA-MSTFTM algorithms.  For 
example, 1 Y , . ( ~ s , ,  wj l  for  the  sentcnce "line up at  the 
screcn door." saclpled  at I O  kHz is shown in Fig. 2 for  a 256 
point  modified  Hamming  window  and a window  shift S1 of 
128.  Fig.  3(a)  shows  a 128 : 64 time-scale  modified  version  of 
I Y,(/nS,, o ) l  produced  by  displaying  these  samples  of ' YW(n,  
w ) ;  with  a  spacing of 64 samples  instead of 128 samples.  A 
signal with  STFTM  close to  this  MSTFT" was estimated by 
starting  with  an  initial  white  Gaussian  noise  sequence  and  then 
iterating  with LSEE-MSTFTM until  the  distance  measure DAM 
was decreased to  the desired level. The  Fourier  transforms in 
thc  algorithm were implemcnted  with 5 I ?-point FFT's. Fig. 
3(b)  shows IX{v(n~S2, w ) /  for S 2  = 64 after 100 iterations. 
Similarly,  Fig. 3(c)  shows IX{,,(mS,, w ) /  after 100 iterations 
of  the  OA-MSTFTM  algorithm  using  the same  initial  estimate. 
Comparisons  of  Fig.  3(b)  and  3(c)  with  Fig. 3(a) indicatc  that 
the  STFTM  of  the signal estimate is very  close t o  the desired 
MSTFTM and  that  the  performance  of  LSEE-MSTFTM and 
0.4-MSTFTM is similar. In Fig. 4. the  distance  measure Div is 
shown as ;I function o f  thc  number o f  itcrations f o r  LSEE- 



GRIFFIN  AND LIM: SIGNAL  ESTIMATION FROM MODIFIED  STFT 2 39 

Fig. 2. STFTM of “line  up  at  the screen door.” I \  

(C) 
Fig. 3.  (a) 128 :64 time-scale compressed  STFTM of original  speech. 

(b)  STFTM of LSEE-MSTFTM estimate.  (c)  STFTM of OA-MSTFTM 
estimate. 

MSTFTM  and  OA-MSTFTM.  Although  OA-MSTFTM  performs 
somewhat  better  during  the  initial  iterations,  LSEE-MSTFTM 
eventually  surpasses  it.  This  same  performance  difference  was 
noted in  all  of the  examples  where  these  two  methods  were 
compared.  In  addition,  LSEE-MSTFTM was  observed to  al- 
ways  decrease DM whereas  OA-MSTFTM  usually  stopped  de- 
creasing DM after  about 100 iterations  and  in  some  cases  in- 
creased DM as  more  iterations  were  performed. 

To show  that  these  methods  perform as well for  noninteger 
compression  or  expansion  factors,  the  second  example  shows 
a 35 : 64  expansion.  Fig.  5(a)  shows  a 35 : 64 time-scale  modi- 
fied  version  of IY,(rnSI, o) l ’  calculated  from  the  original 
speech signal. As  in the  first  example,  the  initial  estimate  was 
a  white  Gaussian  noise  sequence.  Fig.  5(b)  and  5(c)  show  the 
STFTM  of  the  signal  estimate  after 100 iterations  using  a  256 
point  modified  Hamming  window  for  LSEE-MSTFTM  and 
OA-MSTFTM,  respectively.  In  both  of  these  examples,  the 
resultant  signal  estimate  was  clean  high  quality  speech  and 
the  estimates  produced  by  LSEE-MSTFTM  and  OA-MSTFTM 
were  indistinguishable  in  listening  tests. 

The final example  consists of a 1 : 2 time-scale  expansion 
of the 2: 1 time-scale  compressed  speech  generated  in the  first 
example.  The  STFTM  of  the  signal  estimates  produced  are 
then  compared  with  the  STFTM  of  the  original  speech sig- 
nal.  Fig.  6(a)  and  6(b)  show  the  STFTM  of  the  signal  esti- 
mates  after 100 iterations  of  LSEE-MSTFTM  and  OA-MSTFTM, 
respectively.  Comparisons  of  Fig.  6(a) and  6(b)  with  Fig. 
2 show  that  both  BEE-MSTFTM  and  OA-MSTFTM  produce  a 
signal  estimate  with  STFTM  close to  the  STFTM  of  the  original 
speech signal. The  primary  difference  between  these  signal 
estimates  and  the  original  speech  signal is that  a  small  amount 

LSEE-MSTFTM 
0.2 x IO4 I I I I I C  

0 20 40 60 BO IO0  

Number of Iterations 
Fig. 4. DM versus iteration  number  of  LSEE-MSTFTM  and OA- 

MSTFTM. 

of reverberati0n.k  detectable in the signal  estimate  due to  the 
nonstationarity  of  the  2: 1 time-scale  compressed  speech  over 
the  window  length. 

In  addition  to  the  above  three  examples,  other  speech  mate- 
rial including  noisy  speech  has  been  processed  by  the  two 
methods  at  various  compression  and  expansion  ratios.  Infor- 
mal  listening  appears to  indicate  that  the  performance  of 
these  methods is superior to  that of the  system  by  Portnoff 
[ l ]  . It  should  be  noted  that  this  approach  to  time-scale  modi- 
fication  of  speech  differs’considerably  from  that  of  Portnoff. 
In  Portnoffs  method,  the phase  of Y,(rnS, o) is explicitly 
obtained  by  phase  unwrapping  which  is  undesirable  due  to 
various  considerations  including  the  computational  aspect. 
In the  LSEE-MSTFTM  or  OA-MSTFTM  algorithms,  the  phase 
of Yw(mS, o) is implicitly  estimated  in  the  process  of  estimat- 
ing  a  signal  with  STFTM  close to  1 Y,(rnS, o) l  and  no phase 
unwrapping is performed. 

Even  though we used  a  large  number  of  iterations (100) for 
the  examples  illustrated  in  this  paper, we have  observed  that 
essentially  the  same  results  in  terms  of  speech  quality  can be 
obtained  after 25 to 100  iterations. In addition, we  have  ob- 
served that  speech  quality  improves  rapidly  initially  and  then 
more slowly  as the  number  of  iterations  increases.  This is evi- 
denced, to  some  extent, in Fig. 4,  where DM decreases  rapidly 
initially  but  more  slowly  as  the  number of iterations  increases. 
With  a better  choice of the  initial  estimate  of x(n)  than  a  Gaus- 
sian  noise  sequence, it may  be  possible to  reduce  the  number 
of  iterations  required  to  achieve  a  certain  performance. 

Despite  the  large  number  of  iterations’  required,  real  time’ 

‘Due to iterations,  the  total  number of computations is considerably 
larger than Portnoff‘s method [ 1 1. In a  multiprocessor  environment, 
however, the  computational  requirement of each  processor is compar- 
able  or  perhaps less than  that of Portnoff‘s  method. 

’The  definition of  “real time” for time-scale modification  depends  on 
the  application. In applications  where  the  input to the  algorithm is from 
some  storage device and  the  output is converted  to  an analog signal 
which the user listens to,  the  algorithm  must  produceoneoutput  sample 
in an average time less than T I  w’here T1 is the sampling period associ- 
ated  with  the  digital to analog  converter used to  gcnerateoutput speech. 
In applications  where  the  input to the  algorithm is digitized directly 
from  the user’s speech and  the  output is placed on some  storage device, 
the  algorithm  must  process  an  input  data  sample in  an  average time less 
than Tz where T2 is the sampling  period  associated  with the analog to 
digital converter used to digitize the  input speech. 
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Fig. 5 .  (a) 35 :64 time-scale expanded  STFTM of original  speech. (b) STFTM of LSEE-MSTFTM  estimate.  (c)  STFTM of 
OA-MSTFTM estimate. 

Fig. 6 .  I: 2 expansion of 2 : 1 compressed  speech  for (a) LSEE-MSTFTM 
and (b) OA-MSTFTM. 

implementation  appears  possible if enough  processors  are  used 
in series. Specifically, as input  data  are  received,  the  ith  pro- 
cessor  can  perform  the  ith  iteration  and  the i +  1st  processor 
which  follows  the  ith  processor  can  perform  the i + 1st itera- 

tion.  The  inherent  delay  associated  with  each  iteration is only 
the  length  of  the  analysis  window, L data  points.  This is due 
to  the  fact  that  the  computational  aspect of each  iteration of 
the  algorithm is essentially  the  same  as  the  weighted  overlap- 
add  method [lo], in  which  the  delay  between  the  input  and 
outpat  data is L points assuming the  required  computation  for 
each  windowed  data  segment  can  be  performed  during  the 
time  corresponding  to  the  window  shift, S data  points. As an 
example  that  illustrates  the  computational  requirements  and 
delay  involved,  suppose SI = Sz = 64, L = 256,  the  size of the 
DFT  used is 512, the  number of iterations  required  and  the 
number  of  processors  available is 50,  and  speech is sampled  at 
a 10 kHz rate.  Since  the  major  computations  involved in the 
algorithm  are  due to  the  DFT  and  IDFT, if each  processor  can 
compute  two  512-point DFT’s  once  every  6.4  ms,  then  the 
iterative  algorithm  can  be  implemented  in  real  time  with  a 
delay  of  about 1.3 s. Current  hardware  technology is more 
than  capable  of  handling  such  computational  requirements, 
and a delay  of  a  few  seconds is not  a  serious  problem  in  most 
applications of time-scale  modification of speech. 

Even  though  LSEE-MSTFTM  and  OA-MSTFTM  had  similar 
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performance  in  the  context  of  time-scale  modification  of 
speech,  it  should be pointed  out  that  LSEE-MSTFTM  de- 
creases the  distance  measure DM of  (14)  in  each  iteration  until 
it converges to  a  critical  point, while  OA-MSTFTM  sometimes 
increases DM.  In all cases we considered so far,  LSEE-MSTFTM 
always  produced  a  smaller DM than  OA-MSTFTM  after  a 
sufficiently  large  number  of  iterations.  This  difference  may  be 
significant  in  other  applications. 

In  this  paper, we considered  the  application  of  the  theoreti- 

a) ifx'(n) 4 r, then D [ x i + ' ( n ) ]  <D[x' (n) ]  

b) i fx ' (n)Er ,   thenD[x" ' (n)]  <D[x' (n) ]  

and iii) the  mapping A is closed  at  points  outside r. Then  the 
limit  of  any  convergent  subsequence  of {xi(n)}  is in  the  solu- 
tion  set. 

The  first  requirement  of  the  global  convergence  theorem is 
that all estimates  are  contained  in  the  compact  set X. Define 

X =  _ _  
m 2 w2(mS - n )  

m =-m 

~~~ 

cal results  in  this  paper  only  to  the  problem  of  time-scale 
modification  of  speech.  The  application of these  results  to 
other  problems  such as enhancement  of  speech  degrade'd  by 
helium is currently  under  study  and  these  results  will  be re- 
ported in a  later  paper. 

v. S U M M A R Y  

Three  new  algorithms  have  been  presented in this  paper.  The 
first  algorithm,  LSEE-MSTFT,  estimates  a  signal  with  STFT 
closest to  a  MSTFT  and is similar to  the  overlap-add  method. 

where O,(mS, w )  E [-T,T]  for all m ,  w .  

We will  show that X is compact  since  it is both  closed  and 
bounded. In order  to  ensure  that  x(n)r-is  a  finite  iength se- 
quence,  the given MSTFTM 1 Yw(mS,  h)] will be assumed to  
be zero  outside  of  a given range  of m,j In (Al) ,  X has  been 
expressed as a  continuous  function of the  &sed  set  consisting 
of the phase  angles Q,(rnS, w) which  indicates  that X is closed. 
We can further  show  that X is bounded as  follows: 

The  second  algorithm,  LSEE-MSTFTM, is an  iterative  algo-  Equation  (A2)  leads to 
rithm  based on LSEE-MSTFT  which  was  shown t o  converge 
to  a  solution  set  consisting  of  the  critical  points of a  magni- 1 =  
tude-only  distance  'measure. A third  algorithm,  OA-MSTFTM, 
is heuristically  developed  based  on  the  overlap-add  method. Ix(n)l 
LSEE-MSTFTM  and  OA-MSTFTM  were  applied  to  time-scale 2 w2(mS-- n) 
modification  of  speech  with  results  that  appear to  be  superior m =- m 

to  the  method  developed  by  Portnoff [ I ]  . (A31 

E w(mS - n) -. 2n I = li 1 Yw(mS7 w ) l  
m = -m 

. .  

API,L:NI)tX 
In this  Appendix, we show  [hat  the  iterative  algorithm 

(LSEE-MSTFTM) in Fig. 1 decreases in each  ,iteration  the 
distance  measure of (14) and  always  converges to  a  critical 
point  where  the  gradient of the  distance  measure  of (14) with 
respect to  x ( n )  is zero. I t  should  be  noted  that  convergence 
to a  critical  point  does  not  necessarily  imply  convergence  to 
t h e  global m i n i m u m .  

To  show  the  above, we use the following  global  convergence 
theorem [ 131 . 

Let A be  an algorithm  on RN,  and  suppose  that, given x o ( n )  
the  sequence { ~ ' ( n ) } r = ~  is generated  satisfying 

x i +  ' (n )  = A [x'(n)] . 

where 

x ( n )  E X. 
Therefore,  since  (1/2n) Jz = -,, 1 Y,(mS, a)/ dw is bounded 
and  the sum  over m reduces to  a  finite  sum  for  any  single  value 
of n, then x(n)  is bounded  and so is the  set X .  

The  second  requirement is the  existence  of  a  distance  mea- 
sure D for a solution set r and  the  algorithm A that,  satisfies 
ii)  of the  global  _convergence  theorem. Using the distan_ce 
measure  of (4), Xh(mS,  w )  o,f (1 3) minimizes D [x'(n), X ,  
(mS ,  w ) ]  for x'(n) fixed  and X,(mS, w )  constrained  to have 
magnitude lY,(rnS, o)l.  Thus, we must  have 

D [x'(n), '?k(mS, a)] < D [x'(n), 2;- ' (mS, w)]  (A41 

and 
Lct a solution  set P C  RN be given, and  suppose i) all signal 
estimates x'(n) are  contained in a  compact  set X C  R N ,  ii) D [ x ' + ' ( n ) ,  i $ ' ( m S ,  w) ]  G D[x '+ ' (n ) ,  &(rnS, w) ]  . 
there is a continuous  distance  measure D on R N  such that (A51 
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Fig.  7. Successive  iterations  of LSEE-MSTFTM. 

Now,  the  modified  STFT i k ( m S ,  o) is available  which  allows 
estimation of the  next signal x’+l(n)  using  LSEE-MSTFT. 
Since  this  procedure  minimizes D[x(n) ,  zh (mS ,  w)] for 
zk (mS ,  w) fured, we  have 

D[x““(n), l?f(mS, o)] < D[x‘(n), i k ( m S ,  o)] (A6) 

and  equality  holds  if  and  only if xi+’ (n )  = xiin). Combining 
(A5) and (A6), we obtain 

D [~“‘(n) ,  2: ’ (mS, o)] < D [x‘ln), i k ( m S ,  o)] (A7) 

and  equality  holds if and  only if xi+’ (n)  = xi(.). Fig. 7 shows 
D [x’(n>, l ? t < m ~ ,  011 as  segment  a, D [x’ + (a), ik(m~, 011 
as  segment  b,  and D[x’+l(n),  ?k’(mS,  a)] as  segment c. 
Since Xk(mS, 0) and ?k(mS, o) have the  same  phase,  the 
distance  represented  by  segment  a is equivalent  to  the  distance 
between I Xk(mS, a)/ and I Yw(mS, o) I. This  can  be  shown 
by  writing ~ [ x ’ ( n ) ,  2L(ms, u)] explicitly: 

which  reduces to 

- 1 Yw(mS,  w)l]’ dw. (A9) 

This  leads to  the  definition of the  distance  function  based on 
STFT  magnitudeA given by (14). Since DM [xi(n), 1 Y,(mS, 
o) l ]  = D[x’(n),  XL(mS, a ) ] ,  (A7) can  be  written  as 

Dn/r[x‘++’(n), I Y d m S ,  4 1 1  < DM[Xi(4,  iYw(mS, o)l l  
(A1 0) 

and  equality  holds if and  only if xi+’ ( n )  = x’(n). Taking  the 
gradient  of DM with  respect to x(n) yields 

Since  the  gradient  is  the  difference  between  successive esti- 
mates  multiplied  by  a  constant,  the  solution set corresponds 
to  the  zeros of the  gradient  of DM. So, if x’(n) is not  an ele- 
ment  of r, then x”’(n) f xi(n) and DM[x’+’(n), IYw(mS, 
w )  I ]  < DM [x’(n>, I Y,(rn~, w )  I ] . If xi(n)  is an  element of 
r, then x”’(n) = x’(n) and DM [xi+’(n), I Y,(mS, o)l] < 

The  final  requirement  for  convergence is that  the  mapping 
A be  closed.  Since A is a  continuous  function of x(n) ,  it  must 
be  a  closed  mapping  which satisfies  iii) of  the  global  conver- 
gence  theorem.  Thus,  LSEE-MSTFTM  converges  to a solution 
set consisting of the  critical  points  of  the  STFT  magnitude 
distance  measure DM. 

DM [x’(n>, 1 Yw(mS, 11 . 
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Maximum  Likelihood  Spectral  Estimation and Its 
Application  to  Narrow-Band  Speech  Coding 

ROBERT J.  McAULAY,  MEMBER, IEEE 

Abstract-Itakura  and  Saito [ 11 used the  maximum  likelihood (ML) 
method to derive a  spectral  matching  criterion  for autoregressive (i.e., 
all-pole) random processes. In  this  paper,  their  results  are generalized 
to periodic processes  having arbitrary  model  spectra. For the all-pole 
model, Kay’s [2] covariance  domain  solution to the recursive ML (RML) 
problem is cast  into  the  spectral  domain  and used to obtain  the RML 
solution  for  periodic processes.  When applied to speech,  this  leads to  a 
method for solving the  joint  pitch  and  spectrum  envelope  estimation 
problems.  It is shown  that if the  number of frequency  power  measure- 
ments  greatly  exceeds  the  model  order,  then  the RML algorithm  reduces 
to  a  pitch-directed,  frequency  domain version of linear  predictive (LP) 
spectral analysis. Experiments on  a  real-time  vocoder reveals that  the 
RML  synthetic speech has  the  quality  of being  heavily smoothed. 

I .  INTRODUCTION 

I TAKURA  and  Saito [ l ]  have  shown  that  spectral  envelope 
estimation  using  linear  predictive  coding  techniques (LPC) 

has  a  fundamental  theoretical  basis  in  maximum  likelihood 
(ML) estimation.  Furthermore,  they  have  used  this  theory  to 
develop  a  spectral  matching  interpretation  in  terms  of  the 
Itakura-Saito  criterion.  Their  basic  mathematical  model  dealt 
with  speech  waveforms  that  were  sample  functions of an  auto- 
regressive (AR)  random  process. While this is an  appropriate 
model  for  the  class  of  unvoiced  sounds,  one  wonders if perhaps 
the  criterion is valid for voiced  speech  sounds  as  well,  since 
in  this  case  the  waveforms  are  periodic.  This is the  problem 
addressed  in  this  paper. 

In  setting  up  the  formalism for applying  the ML method  for 
periodic  processes,  it  was  not  necessary to  impose  the  all-pole 
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constraint  on  the  model  spectrum.  The  analysis  in  Section I1 
leads to  a  spectral  matching  criterion  identical  to  that  ob- 
tained  by  Itakura  and  Saito,  which  shows  that  the  criterion is 
a  fundamental  property  of  the  maximum  likelihood  method. 
Furthermore,  it  is  shown  that  in  the  periodic  case,  the  model 
spectrum is fitted  to  the  power  measurements  at  the  harmonic 
frequencies. 

In  Section I11 extensive use is made  of  results  obtained  by 
Kay [ 2 ]  to  specialize the ML  criterion  to  the case in  which 
the  spectral  envelope is all-pole.  Then  in  Section IV, lattice 
methods  are  used  to  derive  a  recursive  maximum  likelihood 
(RML)  algorithm  for  estimating  the  AR  parameters.  In  Sec- 
tion V the  application  of  the  RML  technique  to  speech  coding 
is described,  and  the  results  of  a  perceptual  evaluation  using  a 
real-time  analysis/synthesis  system  are  discussed.  A  brief dis- 
cussion  is  presented  in  Section VI on  the  application  of  the 
ML  criterion  to  the  joint  estimation of the  pitch  and  vocal 
tract  spectral  parameters.  Finally,  in  Section VII, some  general 
conclusions  regarding  the  usefulness  of  the  application  of ML 
techniques  to  speech  analysis  are  discussed. 

11. THEORETICAL  FORMULATION 
By definition  a  real,  stationary  random  process s(n)  is pe- 

riodic  with  period N if its  autocorrelation  function R(m)  = 
E[s(n)s(n + m)]  is periodic  with  period N [4] . Then R(m) 
can  be  expanded  by  Fourier series  as 

N -  1 

R(m)  = Pk exp ( i m w k )  
k=O 

where w k  = 2nk/N, and  where 
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