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Abstract

A new on-line learning algorithm which minimizes a statistical de-

pendency among outputs is derived for blind separation of mixed

signals. The dependency is measured by the average mutual in-

formation (MI) of the outputs. The source signals and the mixing

matrix are unknown except for the number of the sources. The

Gram-Charlier expansion instead of the Edgeworth expansion is

used in evaluating the MI. The natural gradient approach is used

to minimize the MI. A novel activation function is proposed for the

on-line learning algorithm which has an equivariant property and

is easily implemented on a neural network like model. The validity

of the new learning algorithm are veri�ed by computer simulations.

1 INTRODUCTION

The problem of blind signal separation arises in many areas such as speech recog-

nition, data communication, sensor signal processing, and medical science. Several

neural network algorithms [3, 5, 7] have been proposed for solving this problem.

The performance of these algorithms is usually a�ected by the selection of the ac-

tivation functions for the formal neurons in the networks. However, all activation

�
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functions attempted are monotonic and the selections of the activation functions

are ad hoc. How should the activation function be determined to minimize the MI?

Is it necessary to use monotonic activation functions for blind signal separation? In

this paper, we shall answer these questions and give an on-line learning algorithm

which uses a non-monotonic activation function selected by the independent com-

ponent analysis (ICA) [7]. Moreover, we shall show a rigorous way to derive the

learning algorithm which has the equivariant property, i.e., the performance of the

algorithm is independent of the scaling parameters in the noiseless case.

2 PROBLEM

Let us consider unknown source signals s

i

(t); i = 1; � � � ; n which are mutually in-

dependent. It is assumed that the sources s

i

(t) are stationary processes and each

source has moments of any order with a zero mean. The model for the sensor output

is

x(t) = As(t)

where A 2 R

n�n

is an unknown non-singular mixing matrix, s(t) =

[s

1

(t); � � � ; s

n

(t)]

T

and x(t) = [x

1

(t); � � � ; x

n

(t)]

T

.

Without knowing the source signals and the mixing matrix, we want to recover the

original signals from the observations x(t) by the following linear transform:

y(t) =Wx(t)

where y(t) = [y

1

(t); � � � ; y

n

(t)]

T

and W 2 R

n�n

is a de-mixing matrix.

It is impossible to obtain the original sources s

i

(t) because they are not identi�able

in the statistical sense. However, except for a permutation of indices, it is possible

to obtain c

i

s

i

(t) where the constants c

i

are inde�nite nonzero scalar factors. The

source signals are identi�able in this sense. So our goal is to �nd the matrixW such

that [y

1

; � � � ; y

n

] coincides with a permutation of [s

1

; � � � ; s

n

] except for the scalar

factors. The solution W is the matrix which �nds all independent components in

the outputs. An on-line learning algorithm for W is needed which performs the

ICA. It is possible to �nd such a learning algorithm which minimizes the dependency

among the outputs. The algorithm in [6] is based on the Edgeworth expansion[8] for

evaluating the marginal negentropy. Both the Gram-Charlier expansion[8] and the

Edgeworth expansion[8] can be used to approximate probability density functions.

We shall use the Gram-Charlier expansion instead of the Edgeworth expansion for

evaluating the marginal entropy. We shall explain the reason in section 3.

3 INDEPENDENCE OF SIGNALS

The mathematical framework for the ICA is formulated in [6]. The basic idea of the

ICA is to minimize the dependency among the output components. The dependency

is measured by the Kullback-Leibler divergence between the joint and the product

of the marginal distributions of the outputs:

D(W ) =

Z

p(y) log

p(y)

Q

n

a=1

p

a

(y

a

)

dy (1)

where p

a

(y

a

) is the marginal probability density function (pdf). Note the Kullback-

Leibler divergence has some invariant properties from the di�erential-geometrical

point of view[1].



It is easy to relate the Kullback-Leibler divergence D(W ) to the average MI of y:

D(W ) = �H(y) +

n

X

a=1

H(y

a

) (2)

where

H(y) = �

R

p(y) log p(y)dy,

H(y

a

) = �

R

p

a

(y

a

) log p

a

(y

a

)dy

a

is the marginal entropy.

The minimization of the Kullback-Leibler divergence leads to an ICA algorithm for

estimatingW in [6] where the Edgeworth expansion is used to evaluate the negen-

tropy. We use the truncated Gram-Charlier expansion to evaluate the Kullback-

Leibler divergence. The Edgeworth expansion has some advantages over the Gram-

Charlier expansion only for some special distributions. In the case of the Gamma

distribution or the distribution of a random variable which is the sum of iid random

variables, the coe�cients of the Edgeworth expansion decrease uniformly. However,

there is no such advantage for the mixed output y

a

in general cases.

To calculate each H(y

a

) in (2), we shall apply the Gram-Charlier expansion to

approximate the pdf p

a

(y

a

). Since E[y] = E[WAs] = 0, we have E[y

a

] = 0. To

simplify the calculations for the entropy H(y

a

) to be carried out later, we assume

m

a

2

= 1. We use the following truncated Gram-Charlier expansion to approximate

the pdf p

a

(y

a

):

p

a

(y

a

) � �(y

a

)f1 +

�

a

3

3!

H

3

(y

a

) +

�

a

4

4!

H

4

(y

a

)g (3)

where �

a

3

= m

a

3

, �

a

4

= m

a

4

� 3, m

a

k

= E[(y

a

)

k

] is the k-th order moment of y

a

,

�(y) =

1

p

2�

e

�

y

2

2

, and H

k

(y) are Chebyshev-Hermite polynomials de�ned by the

identity

(�1)

k

d

k

�(y)

dy

k

= H

k

(y)�(y):

We prefer the Gram-Charlier expansion to the Edgeworth expansion because the

former clearly shows how �

a

3

and �

a

4

a�ect the approximation of the pdf. The last

term in (3) characterizes non-Gaussian distributions. To apply (3) to calculate

H(y

a

), we need the following integrals:

�

Z

�(y)H

2

(y) log�(y)dy =

1

4

(4)

Z

�(y)(H

2

(y))

2

H

4

(y)dy = 24: (5)

These integrals can be obtained easily from the following results for the moments

of a Gaussian random variable N(0,1):

Z

y

2k+1

�(y)dy = 0;

Z

y

2k

�(y)dy = 1 � 3 � � � (2k � 1): (6)

By using the expansion

log(1 + y) � y �

y

2

2

+O(y

3

)

and taking account of the orthogonality relations of the Chebyshev-Hermite poly-

nomials and (4)-(5), the entropy H(y

a

) is expanded as

H(y

a

) �

1

2

log(2�e)�

(�

a

3

)

2

2 � 3!

�

(�

a

4

)

2

2 � 4!

+

5

8

(�

a

3

)

2

�

a

4

+

1

16

(�

a

4

)

3

: (7)



It is easy to calculate

�

Z

�(y) log�(y)dy =

1

2

log(2�e):

From y =Wx, we have H(y) = H(x) + log jdet(W )j: Applying (7) and the above

expressions to (2), we have

D(W) � �H(x)� log jdet(W)j+

n

2

log(2�e)�

n

X

a=1

[

(�

a

3

)

2

2 � 3!

+

(�

a

4

)

2

2 � 4!

�

5

8

(�

a

3

)

2

�

a

4

�

1

16

(�

a

4

)

3

]: (8)

4 A NEW LEARNING ALGORITHM

To obtain the gradient descent algorithm to update W recursively, we need to

calculate

@D

@w

a

k

where w

a

k

is the (a,k) element ofW in the a-th row and k-th column.

Let cof(w

a

k

) be the cofactor of w

a

k

inW . It is not di�cult to derive the followings:

@ log jdet(W )j

@w

a

k

=

cof(w

a

k

)

det(W )

= (W

�T

)

a

k

@�

a

3

@w

a

k

= 3E[(y

a

)

2

x

k

]

@�

a

4

@w

a

k

= 4E[(y

a

)

3

x

k

]

where (W

�T

)

a

k

denotes the (a,k) element of (W

T

)

�1

. From (8), we obtain

@D

@w

a

k

� �(W

�T

)

a

k

+ f(�

a

3

; �

a

4

)E[(y

a

)

2

x

k

] + g(�

a

3

; �

a

4

)E[(y

a

)

3

x

k

] (9)

where

f(y; z) = �

1

2

y +

15

4

yz, g(y; z) = �

1

6

z +

5

2

y

2

+

3

4

z

2

.

From (9), we obtain the gradient descent algorithm to updateW recursively:

dw

a

k

dt

= ��(t)

@D

@w

a

k

= �(t)f(W

�T

)

a

k

� f(�

a

3

; �

a

4

)E[(y

a

)

2

x

k

]� g(�

a

3

; �

a

4

)E[(y

a

)

3

x

k

]g (10)

where �(t) is a learning rate function. Replacing the expectation values in (10) by

their instantaneous values, we have the stochastic gradient descent algorithm:

dw

a

k

dt

= �(t)f(W

�T

)

a

k

� f(�

a

3

; �

a

4

)(y

a

)

2

x

k

� g(�

a

3

; �

a

4

)(y

a

)

3

x

k

g: (11)

We need to use the following adaptive algorithm to compute �

a

3

and �

a

4

in (11):

d�

a

3

dt

= ��(t)(�

a

3

� (y

a

)

3

)

d�

a

4

dt

= ��(t)(�

a

4

� (y

a

)

4

+ 3) (12)

where �(t) is another learning rate function.

The performance of the algorithm (11) relies on the estimation of the third and

fourth order cumulants performed by the algorithm (12). Replacing the moments



of the random variables in (11) by their instantaneous values, we obtain the following

algorithm which is a direct but coarse implementation of (11):

dw

a

k

dt

= �(t)f(W

�T

)

a

k

� f(y

a

)x

k

g (13)

where the activation function f(y) is de�ned by

f(y) =

3

4

y

11

+

25

4

y

9

�

14

3

y

7

�

47

4

y

5

+

29

4

y

3

: (14)

Note the activation function f(y) is an odd function, not a monotonic function.

The equation (13) can be written in a matrix form:

dW

dt

= �(t)fW

�T

� f(y)x

T

g: (15)

This equation can be further simpli�ed as following by substituting x

T

W

T

= y

T

:

dW

dt

= �(t)fI � f(y)y

T

gW

�T

(16)

where f(y) = (f(y

1

); � � � ; f(y

n

))

T

. The above equation is based on the gradient

descent algorithm (10) with the following matrix form:

dW

dt

= ��(t)

@D

@W

: (17)

From information geometry perspective[1], since the mixing matrix A is non-

singular we had better replace the above algorithm by the following natural gradient

descent algorithm:

dW

dt

= ��(t)

@D

@W

W

T

W : (18)

Applying the previous approximation of the gradient

@D

@W

to (18), we obtain the

following algorithm:

dW

dt

= �(t)fI � f(y)y

T

gW (19)

which has the same \equivariant" property as the algorithms developed in [4, 5].

Although the on-line learning algorithms (16) and (19) look similar to those in

[3, 7] and [5] respectively, the selection of the activation function in this paper is

rational, not ad hoc. The activation function (14) is determined by the ICA. It is

a non-monotonic activation function di�erent from those used in [3, 5, 7].

There is a simple way to justify the stability of the algorithm (19). Let Vec(�)

denote an operator on a matrix which cascades the columns of the matrix from the

left to the right and forms a column vector. Note this operator has the following

property:

Vec(ABC) = (C

T


A)Vec(B): (20)

Both the gradient descent algorithm and the natural gradient descent algorithm are

special cases of the following general gradient descent algorithm:

dVec(W )

dt

= ��(t)P

@D

@Vec(W )

(21)

where P is a symmetric and positive de�nite matrix. It is trivial that (21) becomes

(17) when P = I. When P =W

T

W 
 I , applying (20) to (21), we obtain

dVec(W )

dt

= ��(t)(W

T

W 
 I)

@D

@Vec(W )

= ��(t)Vec(

@D

@W

W

T

W )



and this equation implies (18). So the natural gradient descent algorithm updates

W (t) in the direction of decreasing the dependency D(W ). The information geom-

etry theory[1] explains why the natural gradient descent algorithm should be used

to minimize the MI.

Another on-line learning algorithm for blind separation using recurrent network was

proposed in [2]. For this algorithm, the activation function (14) also works well.

In practice, other activation functions such as those proposed in [2]-[6] may also be

used in (19). However, the performance of the algorithm for such functions usually

depends on the distributions of the sources. The activation function (14) works for

relatively general cases in which the pdf of each source can be approximated by the

truncated Gram-Charlier expansion.

5 SIMULATION

In order to check the validity and performance of the new on-line learning algorithm

(19), we simulate it on the computer using synthetic source signals and a random

mixing matrix. The extensive computer simulations have fully con�rmed the theory

and the validity of the algorithm (19). Due to the limit of space we present here

only one illustrative example.

Example:

Assume that the following three unknown sources are mixed by a random mixing

matrix A:

[s

1

(t); s

2

(t); s

3

(t)] = [n(t); 0:1sin(400t)cos(30t); 0:01sign[sin(500t+ 9cos(40t))]

where n(t) is a noise source uniformly distributed in the range [�1;+1], and s

2

(t)

and s

3

(t) are two deterministic source signals. The elements of the mixing matrix

A are randomly chosen in [�1;+1]. The learning rate is exponentially decreasing

to zero as �(t) = 250exp(�5t).

A simulation result is shown in Figure 1. The �rst three signals denoted by X1,

X2 and X3 represent mixing (sensor) signals: x

1

(t), x

2

(t) and x

3

(t). The last

three signals denoted by O1, O2 and O3 represent the output signals: y

1

(t), y

2

(t),

and y

3

(t). By using the proposed learning algorithm, the neural network is able

to extract the deterministic signals from the observations after approximately 500

milliseconds.

The performance index E

1

is de�ned by

E

1

=

n

X

i=1

(

n

X

j=1

jp

ij

j

max

k

jp

ik

j

� 1) +

n

X

j=1

(

n

X

i=1

jp

ij

j

max

k

jp

kj

j

� 1)

where P = (p

ij

) =WA.

6 CONCLUSION

The major contribution of this paper the rigorous derivation of the e�ective blind

separation algorithm with equivariant property based on the minimization of the

MI of the outputs. The ICA is a general principle to design algorithms for blind

signal separation. The most di�culties in applying this principle are to evaluate

the MI of the outputs and to �nd a working algorithm which decreases the MI.

Di�erent from the work in [6], we use the Gram-Charlier expansion instead of the

Edgeworth expansion to calculate the marginal entropy in evaluating the MI. Using



the natural gradient method to minimize the MI, we have found an on-line learning

algorithm to �nd a de-mixing matrix. The algorithm has equivariant property and

can be easily implemented on a neural network like model. Our approach provides

a rational selection of the activation function for the formal neurons in the network.

The algorithm has been simulated for separating unknown source signals mixed by

a random mixing matrix. Our theory and the validity of the new learning algorithm

are veri�ed by the simulations.

    
X1

-2

0

2

X2

-2

0

2

X3

-1
0
1

O1

-2

0

2

O2

-2
-1
0
1

O3

-1
0
1
2

t

E1

0
0.2
0.4
0.6

0.1 0.2 0.3 0.4

Figure 1: The mixed and separated signals, and the performance index
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